精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個公共點,直線與橢圓只有一個公共點.

1)求橢圓的標準方程;

2)已知動直線過橢圓的左焦點,且與橢圓分別交于兩點,試問:軸上是否存在定點,使得為定值?若存在,求出該定值和點的坐標;若不存在,請說明理由.

【答案】(1)(2)在軸上存在點,使得為定值

【解析】

1)根據已知求出即得橢圓的標準方程;(2)當直線的斜率存在時,設直線的方程為,設,利用韋達定理和向量的數量積求出,此時為定值;當直線的斜率不存在時,直線的方程為,求出此時點R也滿足前面的結論,即得解.

(1)依題意,得,

,

故橢圓的標準方程為.

當直線的斜率存在時,設直線的方程為,

代人橢圓的方程,可得

,,則,

,則

為定值,則,解得

此時

點的坐標為

②當直線的斜率不存在時,直線的方程為,代人,得

不妨設,若,則

綜上所述,在軸上存在點,使得為定值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正項數列的首項,前n項和滿足

(1)求數列的通項公式;

(2)若數列是公比為4的等比數列,且,,也是等比數列,若數列單調遞增,求實數的取值范圍;

(3)若數列、都是等比數列,且滿足,試證明: 數列中只存在三項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如下圖所示,ABCD是邊長為3的正方形,DE平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC平面BDE;

(2)求二面角F-BE-D的余弦值;

(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM平面BEF,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數方程為,(為參數),曲線C的參數方程為α為參數).

)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(3,),判斷點P與直線l位置關系;

)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的是( )

A.回歸直線至少經過其樣本數據中的一個點

B.從獨立性檢驗可知有99%的把握認為吃地溝油與患胃腸癌有關系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數據的每一個數據都加上或減去同一個常數后,其方差也要加上或減去這個常數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,是等邊三角形,已知,

(1)設上的一點,證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結束后將球放回原箱)

(1)求在1次游戲中,

①摸出3個白球的概率;

②獲獎的概率;

(2)求在2次游戲中獲獎次數的分布列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求函數的極值;

2)求的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解關于x的不等式:x2-(a+)x+1≤0 (a∈R,且a≠0)

查看答案和解析>>

同步練習冊答案