【題目】已知橢圓: 的一個焦點與的焦點重合,點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線: ()與橢圓交于兩點,且以為對角線的菱形的一頂點為,求面積的最大值(為坐標原點).
科目:高中數(shù)學 來源: 題型:
【題目】我市某機構(gòu)為調(diào)查2017年下半年落實中學生“陽光體育”活動的情況,設(shè)平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,圖1是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的頻率是( )
圖1
A. 0.64 B. 0.36 C. 6400 D. 3600
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),Sn是數(shù)列{an}的前n項和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4 坐標系與參數(shù)方程
在直角坐標系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標系.
(1)寫出的極坐標方程,并將化為普通方程;
(2)若直線的極坐標方程為與相交于兩點,
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,ABC為一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,為了重建草坪,設(shè)計師準備了兩套方案:
方案一:擴大為一個直角三角形,其中斜邊DE過點B,且與AC平行,DF過點A,EF過點C;
方案二:擴大為一個等邊三角形,其中DE過點B,DF過點A,EF過點C.
(1)求方案一中三角形DEF面積S1的最小值;
(2)求方案二中三角形DEF面積S2的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓(),若橢圓上的一動點到右焦點的最短距離為,且右焦點到直線的距離等于短半軸的長,已知,過的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等差數(shù)列{an}的前n項和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,則S13等于( )
A.152
B.154
C.156
D.158
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com