【題目】如圖,ABC為一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,為了重建草坪,設計師準備了兩套方案:
方案一:擴大為一個直角三角形,其中斜邊DE過點B,且與AC平行,DF過點A,EF過點C;
方案二:擴大為一個等邊三角形,其中DE過點B,DF過點A,EF過點C.
(1)求方案一中三角形DEF面積S1的最小值;
(2)求方案二中三角形DEF面積S2的最大值.

【答案】
(1)解:在方案一:在三角形AFC中,設∠ACF=α,α∈(0, ),

,

因為DE∥AC,所以∠E=α, ,

,即 ,

解得 ,

所以 ,

所以當sin2α=1,即α=45°時,S1有最小值


(2)解:在方案二:在三角形DBA中,設∠DBA=β,β∈(0, ),則 ,

解得

三角形CBE中,有 ,解得 ,

則等邊三角形的邊長為

所以邊長的最大值為 ,所以面積S2的最大值為


【解析】(1)在方案一:在三角形AFC中,設∠ACF=α,α∈(0, ),表示出三角形DEF面積S1 , 利用基本不等式求出最小值;(2)在方案二:在三角形DBA中,設∠DBA=β,β∈(0, ),表示出三角形DEF面積S1 , 利用輔助角公式求出最小值.
【考點精析】關于本題考查的基本不等式在最值問題中的應用,需要了解用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是(
A.單位向量都相等
B.若 是共線向量, 是共線向量,則 是共線向量
C.| + |=| |,則 =0
D.若 是單位向量,則 =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,點A(1,1),B(0,﹣2),C(4,2),D為AB的中點,DE∥BC. (Ⅰ)求BC邊上的高所在直線的方程;
(Ⅱ)求DE所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的一個焦點與的焦點重合,點在橢圓上.

(1)求橢圓的方程;

(2)設直線 )與橢圓交于兩點,且以為對角線的菱形的一頂點為,求面積的最大值(為坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),關于的不等式只有兩個整數(shù)解,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,前m(m為奇數(shù))項的和為77,其中偶數(shù)項之和為33,且a1﹣am=18,則數(shù)列{an}的通項公式為an=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式為12x2﹣ax>a2
(1)當a=2時,求不等式的解集;
(2)當a∈R時,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各式的大小關系正確的是(
A.sin11°>sin168°
B.sin194°<cos160°
C.tan(﹣ )<tan(﹣
D.cos(﹣ )>cos

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱臺的上下底面分別是邊長為2和4的正方形, = 4且 ⊥底面,點的中點.

(Ⅰ)求證: ;

(Ⅱ)在邊上找一點,使∥面,

并求三棱錐的體積.

查看答案和解析>>

同步練習冊答案