【題目】在△ABC中,3sinA+4cosB=6,3cosA+4sinB=1,則∠C的大小為 .
【答案】
【解析】解:由3sinA+4cosB=6①,3cosA+4sinB=1②, ①2+②2得:(3sinA+4cosB)2+(3cosA+4sinB)2=37,
化簡得:9+16+24(sinAcosB+cosAsinB)=37,
即sin(A+B)=sin(π﹣C)=sinC= ,又∠C∈(0,π),
∴∠C的大小為 或 ,
若∠C= π,得到A+B= ,則cosA> ,所以3cosA> >1,
∴3cosA+4sinB>1與3cosA+4sinB=1矛盾,所以∠C≠ π,
∴滿足題意的∠C的值為 .
則∠C的大小為 .
所以答案是:
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解余弦定理的定義的相關(guān)知識(shí),掌握余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和Sn , 首項(xiàng)a1=a,公比為q(q≠0且q≠1).
(1)推導(dǎo)證明:Sn= ;
(2)等比數(shù)列{an}中,是否存在連續(xù)的三項(xiàng):ak、ak+1、ak+2 , 使得這三項(xiàng)成等差數(shù)列?若存在,求出符合條件的等比數(shù)列公比q的值,若不存在,說明理由;
(3)本題中,若a=q=2,已知數(shù)列{nan}的前n項(xiàng)和Tn , 是否存在正整數(shù)n,使得Tn≥2016?若存在,求出n的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若圓C的圓心在第一象限,圓C與x軸相交于A(1,0)、B(3,0)兩點(diǎn),且與直線x﹣y+1=0相切,則圓C的標(biāo)準(zhǔn)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn),且.
(1)求二面角的大。
(2)在側(cè)棱SC上是否存在一點(diǎn)E,使得平面?若存在,求 的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)與的焦點(diǎn)重合,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線: ()與橢圓交于兩點(diǎn),且以為對角線的菱形的一頂點(diǎn)為,求面積的最大值(為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用簡單隨機(jī)抽樣方法抽取了30名同學(xué),對其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動(dòng).
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過2小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}中,前m(m為奇數(shù))項(xiàng)的和為77,其中偶數(shù)項(xiàng)之和為33,且a1﹣am=18,則數(shù)列{an}的通項(xiàng)公式為an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極大值,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的點(diǎn)到點(diǎn)的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)過點(diǎn)且斜率為的直線交曲線于, 兩點(diǎn),若,當(dāng)時(shí),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com