【題目】已知拋物線,過點的直線與拋物線相切,設第一象限的切點為.
(1)求點的坐標;
(2)若過點的直線與拋物線相交于兩點,圓是以線段為直徑的圓過點,求直線的方程.
【答案】(1);(2)或
【解析】
(1)根據(jù)題意由點斜式設出直線方程,聯(lián)立后根據(jù)相切可知,再由切點在第一象限可求得P點坐標。
(2)設出直線方程,聯(lián)立拋物線,根據(jù)兩個交點可得;根據(jù)韋達定理用m表示出、、;根據(jù)圓是以線段為直徑的圓過點,可知,代入坐標可解得或,則直線方程可得。
(1)由題意知可設過點的直線方程為
聯(lián)立得:,
又因為直線與拋物線相切,則,即
當時,直線方程為,則聯(lián)立得點坐標為
(2)設直線的方程為:,,
聯(lián)立得:,則恒成立,
,
則,
由于圓是以線段為直徑的圓過點,則,
,則或
則直線的方程為或
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前n項和為,且,.
(1)求數(shù)列的通項公式;
(2)設數(shù)列的前n項和為,求;
(3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)在定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上的值域為,則稱函數(shù)是該定義域上的“和諧函數(shù)”.
(1)判斷函數(shù)是不是“和諧函數(shù)”,并說明理由;
(2)若函數(shù)是“和諧函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的三頂點坐標分別為,,.
(1)求的外接圓圓M的方程;
(2)已知動點P在直線上,過點P作圓M的兩條切線PE,PF,切點分別為E,F.
①記四邊形PEMF的面積分別為S,求S的最小值;
②證明直線EF恒過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩地相距,汽車從甲地勻速行駛到乙地,速度不超過.已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度(單位:)的平方成正比,且比例系數(shù)為,固定部分為元.
(1)把全程運輸成本(元)表示為速度的函數(shù),并求出當,時,汽車應以多大速度行駛,才能使得全程運輸成本最;
(2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當,元,此時汽車的速度應調(diào)整為多大,才會使得運輸成本最小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC的外接圓⊙O的半徑為5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.
(1)求證:平面AEC⊥平面BCED;
(2)試問線段DE上是否存在點M,使得直線AM與平面ACE所成角的正弦值為?若存在,確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設為正項數(shù)列的前項和,且.數(shù)列滿足:,.
(1)求數(shù)列的通項公式;
(2)設,求數(shù)列的前項和;
(3)設,問是否存在整數(shù),使數(shù)列為遞增數(shù)列?若存在求的值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過點的圓的圓心C在x軸上,且與過原點傾斜角為30°的直線l相切.
(1)求圓C的標準方程;
(2)求直線被圓C截得的弦長;
(3)點P在直線m:上,過點P作⊙C的切線PM、PN,切點分別為M、N,求經(jīng)過P、M、N、C四點的圓所過的定點坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com