【題目】若函數(shù)的圖象與曲線C:存在公共切線,則實數(shù)的取值范圍為

A. B. C. D.

【答案】A

【解析】

設(shè)公切線與f(x)、g(x)的切點坐標(biāo),由導(dǎo)數(shù)的幾何意義、斜率公式列出方程化簡,分離出a后構(gòu)造函數(shù),求出函數(shù)的最值,即可求出實數(shù)a的取值范圍.

設(shè)公切線與f(x)=x2+1的圖象切于點(x1,),

與曲線C:g(x)=aex+1切于點(x2),

∴2x1,

化簡可得,2x1,得x1=02x2=x1+2,

∵2x1,且a>0,∴x1>0,則2x2=x1+2>2,即x2>1,

2x1a=,

設(shè)h(x)=(x>1),則h′(x)=

∴h(x)在(1,2)上遞增,在(2,+∞)上遞減,

∴h(x)max=h(2)= ,

∴實數(shù)a的取值范圍為(0,],

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校共有教師300人,其中中級教師有120人,高級教師與初級教師的人數(shù)比為.為了解教師專業(yè)發(fā)展要求,現(xiàn)采用分層抽樣的方法進行調(diào)查,在抽取的樣本中有中級教師72人,則該樣本中的高級教師人數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.

1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);

2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進行分層抽樣,從上述500名患者中抽取300人,得到如下表格.

i)請將表格補充完整;

短潛伏者

長潛伏者

合計

60歲及以上

90

60歲以下

140

合計

300

ii)研究發(fā)現(xiàn),某藥物對新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗,再從選取的7人中隨機抽取兩人做Ⅱ期臨床試驗,求兩人中恰有1人為“長潛伏者”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,,點滿足,記點的軌跡為

1)求的方程;

2)設(shè)直線交于、兩點,求的面積(為坐標(biāo)原點);

3)設(shè)是線段中垂線上的動點,過的兩條切線、,、分別為切點,判斷是否存在定點,直線始終經(jīng)過點,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是菱形,四邊形是正方形,,,,點的中點.

(1)求證:平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地的高速公路全長166千米,汽車從甲地進入該高速公路后勻速行駛到乙地,車速(千米/時).已知汽車每小時的運輸成本(以元為單位)由可變部分和固定部分組成:可變部分為,固定部分為220.

(1)把全程運輸成本(元)表示為速度(千米/時)的函數(shù),并指出這個函數(shù)的定義域;

(2)汽車應(yīng)以多大速度行駛才能使全程運輸成本最?最小運輸成本為多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個月內(nèi)通過該路口的駕駛員中隨機抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計

駕齡不超過1年

22

8

30

駕齡1年以上

8

12

20

合計

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時,令,其導(dǎo)函數(shù)為,設(shè)是函數(shù)的兩個零點,判斷是否為的零點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年反映社會現(xiàn)實的電影《我不是藥神》引起了很大的轟動,治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場上治療一類慢性病的特效藥品的研發(fā)費用(百萬元)和銷量(萬盒)的統(tǒng)計數(shù)據(jù)如下:

研發(fā)費用(百萬元)

2

3

6

10

13

15

18

21

銷量(萬盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相關(guān)系數(shù)精確到0.01,并判斷的關(guān)系是否可用線性回歸方程模型擬合?(規(guī)定:時,可用線性回歸方程模型擬合);

(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,并對其進行兩次檢測,當(dāng)?shù)谝淮螜z測合格后,才能進行第二次檢測.第一次檢測時,三類劑型,合格的概率分別為,,,第二次檢測時,三類劑型,,合格的概率分別為,,.兩次檢測過程相互獨立,設(shè)經(jīng)過兩次檢測后,,三類劑型合格的種類數(shù)為,求的數(shù)學(xué)期望.

附:(1)相關(guān)系數(shù)

2,,,

查看答案和解析>>

同步練習(xí)冊答案