【題目】某學(xué)校共有教師300人,其中中級(jí)教師有120人,高級(jí)教師與初級(jí)教師的人數(shù)比為.為了解教師專業(yè)發(fā)展要求,現(xiàn)采用分層抽樣的方法進(jìn)行調(diào)查,在抽取的樣本中有中級(jí)教師72人,則該樣本中的高級(jí)教師人數(shù)為__________

【答案】60

【解析】

先求出高級(jí)教師與初級(jí)教師的人數(shù)之和,然后根據(jù)分層抽樣的定義,即可得到結(jié)論.

學(xué)校共有教師300人,其中中級(jí)教師有120人,

高級(jí)教師與初級(jí)教師的人數(shù)為300﹣120=180人,

抽取的樣本中有中級(jí)教師72人,

設(shè)樣本人數(shù)為n,則,解得n=180,

則抽取的高級(jí)教師與初級(jí)教師的人數(shù)為180﹣72=108,

高級(jí)教師與初級(jí)教師的人數(shù)比為5:4.

該樣本中的高級(jí)教師人數(shù)為

故答案為:60

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知圓為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,圓的極坐標(biāo)方程.

(1)分別寫(xiě)出圓的普通方程與圓的直角坐標(biāo)方程;

(2)設(shè)圓與圓的公共弦的端點(diǎn)為,圓的圓心為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面底面,且,設(shè)分別為、的中點(diǎn).

(1)求證:平面

(2)求證:平面平面;

(3)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)x>2),若恒成立,則整數(shù)k的最大值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形內(nèi)角A滿足,則的值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形內(nèi)角A滿足,則的值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開(kāi)展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時(shí)間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時(shí)間的中位數(shù)為80

D. 無(wú)論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時(shí)間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)計(jì)劃用兩張鐵絲網(wǎng)在一片空地上圍成一個(gè)梯形養(yǎng)雞場(chǎng),,已知兩段是由長(zhǎng)為的鐵絲網(wǎng)折成,兩段是由長(zhǎng)為的鐵絲網(wǎng)折成.設(shè)上底的長(zhǎng)為,所圍成的梯形面積為.

1)求S關(guān)于x的函數(shù)解析式,并求x的取值范圍;

2)當(dāng)x為何值時(shí),養(yǎng)雞場(chǎng)的面積最大?最大面積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲乙兩班各6名學(xué)生,測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如下圖.

甲班

2

9 1 0

8 2

18

17

16

乙班

0

0 1 4 7

3

(1)判斷哪個(gè)班的平均身高較高, 并說(shuō)明理由;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這6名學(xué)生中隨機(jī)抽取兩名學(xué)生,求至少有一名身高不低于的學(xué)生被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案