【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為3 ,直線 與拋物線 交于 , 兩點(diǎn), 為坐標(biāo)原點(diǎn)。
(1)求拋物線的方程;
(2)求的面積.
【答案】(1);(2)
【解析】
(1)由題意可設(shè)拋物線的方程為y2=2px(p>0),運(yùn)用拋物線的定義,可得23,解得p=2,進(jìn)而得到拋物線的方程;
(2)由題意,直線AB方程為y=x﹣1,與y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根與系數(shù)的關(guān)系和弦長(zhǎng)公式,算出|AB|;利用點(diǎn)到直線的距離公式算出點(diǎn)O到直線AB的距離,即可求出△AOB的面積
(1)拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,
且過(guò)一點(diǎn)P(2,m),
可設(shè)拋物線的方程為y2=2px(p>0),
P(2,m)到焦點(diǎn)的距離為3,
即有P到準(zhǔn)線的距離為6,即23,
解得p=2,
即拋物線的標(biāo)準(zhǔn)方程為y2=4x;
(2)聯(lián)立方程化簡(jiǎn),得x2﹣6x+1=0
設(shè)交點(diǎn)為A(x1,y1),B(x2,y2)
∴x1+x2=6,x1x2=1
可得|AB||x1﹣x2|=8
點(diǎn)O到直線l的距離d,
所以△AOB的面積為S|AB|d82.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面, ,點(diǎn)是中點(diǎn).
(1)求證: ;
(2)若, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是
(1)對(duì)于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·湖北武漢第二次調(diào)研)如圖是依據(jù)某城市年齡在20歲到45歲的居民上網(wǎng)情況調(diào)查而繪制的頻率分布直方圖,現(xiàn)已知年齡在[30,35),[35,40),[40,45)的上網(wǎng)人數(shù)呈現(xiàn)遞減的等差數(shù)列分布,則年齡在[35,40)的網(wǎng)民出現(xiàn)的頻率為 ( )
A. 0.04 B. 0.06
C. 0.2 D. 0.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·全國(guó)卷Ⅲ文,18)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.
(1)估計(jì)六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;
(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離為海里的處有一艘走私船,在處北偏西方向,距離為海里的處有一艘緝私艇奉命以海里/時(shí)的速度追截走私船,此時(shí),走私船正以海里/時(shí)的速度從處向北偏東方向逃竄.
(1)問(wèn)船與船相距多少海里?船在船的什么方向?
(2)問(wèn)緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列的公差不為0,是其前項(xiàng)和,給出下列命題:
①若,且,則和都是中的最大項(xiàng);
②給定,對(duì)一切,都有;
③若,則中一定有最小項(xiàng);
④存在,使得和同號(hào).
其中正確命題的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為: (為參數(shù), ),將曲線經(jīng)過(guò)伸縮變換: 得到曲線.
(1)以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,求的極坐標(biāo)方程;
(2)若直線(為參數(shù))與相交于兩點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬(wàn)元情況的條形統(tǒng)計(jì)圖已知利潤(rùn)為收入與支出的差,即利潤(rùn)收入一支出,則下列說(shuō)法正確的是
A. 利潤(rùn)最高的月份是2月份,且2月份的利潤(rùn)為40萬(wàn)元
B. 利潤(rùn)最低的月份是5月份,且5月份的利潤(rùn)為10萬(wàn)元
C. 收入最少的月份的利潤(rùn)也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com