【題目】如圖,已知多面體,,,均垂直于平面ABC,,,,
(1)證明:平面;
(2)求平面與平面所成的銳角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)以AC的中點(diǎn)O為原點(diǎn),分別以射線OB,OC為x,y軸的正半軸,建立空間直角坐標(biāo)系O﹣xyz,利用向量法能證明AB1⊥平面A1B1C1.
(2)求出平面AB1C1的一個法向量和平面ABB1的一個法向量,利用向量法能求出平面AB1C1與平面ABB1所成的角的余弦值.
(1)由,,均垂直于平面ABC,則平面平面ABC
∴取AC中點(diǎn)O,過O作平面ABC的垂線OD,交A1C1于D,
∵AB=BC,∴OB⊥OC,
∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC,
以O為原點(diǎn),以OB,OC,OD所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
則A(0,,0),B(1,0,0),B1(1,0,2),C1(0,,1),A1(0,,4),
∴(1,,0),(0,2,1),
,,
由,得.
由,得,
∴平面.
(2)設(shè)平面的一個法向量為,
則由,得.
設(shè)平面ABB1的法向量為,則,
∴,令y=1可得(,1,0),
∴,
∴平面與平面所成的銳角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展, 年某網(wǎng)購平臺“雙”一天的銷售業(yè)績高達(dá)億元人民幣,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出次成功交易,并對其評價進(jìn)行統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為,對快遞的滿意率為,其中對商品和快遞都滿意的交易為次.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對商品滿意與對快遞滿意之間有關(guān)系”?
對快遞滿意 | 對快遞不滿意 | 合計(jì) | |
對商品滿意 | |||
對商品不滿意 | |||
合計(jì) |
(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的次購物中,設(shè)對商品和快遞都滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)(是自然對數(shù)的底數(shù)).
(Ⅰ)若,證明:曲線沒有經(jīng)過點(diǎn)的切線;
(Ⅱ)若函數(shù)在其定義域上不單調(diào),求的取值范圍;
(Ⅲ)是否存在正整數(shù),當(dāng)時,函數(shù)的圖象在軸的上方,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為2,P為BC的中點(diǎn),Q為線段上的動點(diǎn),過點(diǎn)A,P,Q的平面截該正方體所得的截面記為S,則下列命題正確的是______(寫出所有正確命題的編號).
①當(dāng)時,S為四邊形;②當(dāng)時,S為等腰梯形;③當(dāng)時,S與的交點(diǎn)R滿足;④當(dāng)時,S為五邊形;⑤當(dāng)時,S的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·全國Ⅱ卷)如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中點(diǎn).
(1)證明:直線CE∥平面PAB;
(2)點(diǎn)M在棱PC上,且直線BM與底面ABCD所成角為45°,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為, ,數(shù)列滿足點(diǎn)在直線上.
(1)求數(shù)列, 的通項(xiàng), ;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,求對所有的正整數(shù)都有成立的的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,D,E,F分別是邊,,中點(diǎn),下列說法正確的是( )
A.
B.
C.若,則是在的投影向量
D.若點(diǎn)P是線段上的動點(diǎn),且滿足,則的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在高二年級開設(shè)大學(xué)先修課程《線性代數(shù)》,共有50名同學(xué)選修,其中男同學(xué)30名,女同學(xué)20名.為了對這門課程的教學(xué)效果進(jìn)行評估,學(xué)校按性別采用分層抽樣的方法抽取5人進(jìn)行考核.
(Ⅰ)求抽取的5人中男、女同學(xué)的人數(shù);
(Ⅱ)考核前,評估小組打算從抽取的5人中隨機(jī)選出2名同學(xué)進(jìn)行訪談,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com