【題目】已知等差數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)求.
【答案】(1)an=n,bn=2n-1(2)
【解析】試題分析:(1)設(shè)等差數(shù)列{an}的公差為d,d>0,{bn}的公比為q,運用等差數(shù)列和等比數(shù)列的通項公式和求和公式,解方程可得公差和公比,即可得到所求通項公式;
(2)明確通項的表達式,利用錯位相減法求和.
試題解析:
(1)設(shè)等差數(shù)列{an}的公差為d,d>0,等比數(shù)列{bn}的公比為q,
則an=1+(n-1)d,bn=qn-1.
依題意有
解得或 (舍去).
故an=n,bn=2n-1.
(2)由(1)知Sn=1+2+…+n=n(n+1),
即==2,
故++…+=2
=2=.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點,△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點.
(Ⅰ)若N為線段DC1上的點,且直線MN∥平面ADB1A1 , 試確定點N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題共14分)
如圖,在四棱錐中, 平面,底面是菱形, .
(Ⅰ)求證: 平面
(Ⅱ)若求與所成角的余弦值;
(Ⅲ)當(dāng)平面與平面垂直時,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=4x++3,則對于y=f(x)在x<0時,下列說法正確的是( 。
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b 是函數(shù) 的兩個不同的零點,且a,b,-2 這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間
(1)求函數(shù)的所有“保值”區(qū)間
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)是上的減函數(shù),,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)單調(diào)遞增,求實數(shù)的取值范圍;
(3)當(dāng)時,有最大值1,求實數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com