【題目】已知函數(shù).

(I)求,的值;

(II)求

(III)若,求.

【答案】(I),-11 ; (II)f8x1)=;(III)

【解析】

(I)根據(jù)函數(shù)的解析式依次求值即可;(II)根據(jù)解析式對8x1分三種情況依次求出,最后再用分段函數(shù)的形式表示出f8x1);(III)根據(jù)解析式對4a分三種情況,分別由條件列出方程求出a的值.

(I)由題意得,f1+)=f2+)=1+

=1+ ,

f(﹣4)=﹣8+3-5,則f-5)=-10+3-7,f-7)=-14+3-11

所以;

(II)8x11x時,f8x1)=1+

當﹣18x110x時,f8x1)=(8x12+164x216x+2,

8x1<﹣1x0時,f8x1)=28x1+316x+1,

綜上可得,f8x1)= ;

(III)因為,所以分以下三種情況:

4a1時,即a時,f4a)=,解得a,成立,

當﹣14a1時,即-a時,f4a)=16a2+1,解得a,成立

4a<﹣1時,即a<-時,f4a)=8a+3,解得a=-,不成立,

綜上可得,a的值是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足(
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }為等比數(shù)列,并求{an}的通項公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人們生活水平的不斷提高,人們對餐飲服務行業(yè)的要求也越來越高,由于工作繁忙無法抽出時間來享受美味,這樣網(wǎng)上外賣訂餐應運而生.若某商家的一款外賣便當每月的銷售量(單位:千盒)與銷售價格(單位:元/盒)滿足關系式其中,為常數(shù),已知銷售價格為14元/盒時,每月可售出21千盒.

(1)求的值;

(2)假設該款便當?shù)氖澄锊牧稀T工工資、外賣配送費等所有成本折合為每盒12元(只考慮銷售出的便當盒數(shù)),試確定銷售價格的值,使該店每月銷售便當所獲得的利潤最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的各項均為正數(shù),a1=1,前n項和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2S3=8.

(1)求數(shù)列{an}與{bn}的通項公式;

(2)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,點(an , an+1)在直線y=x+2上,且首項a1是方程3x2﹣4x+1=0的整數(shù)解.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)數(shù)列{an}的前n項和為Sn , 等比數(shù)列{bn}中,b1=a1 , b2=a2 , 數(shù)列{bn}的前n項和為Tn , 當Tn≤Sn時,請直接寫出n的值.

查看答案和解析>>

同步練習冊答案