【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(Ⅰ)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
【答案】證明:(Ⅰ)連結(jié)A1D,直線MN∥平面ADB1A1 , MN平面A1C′1D, 平面A1C1D∩平面ADB1A1=A1D1 , ∴MN∥A1D,
又M為棱A1C1的中點(diǎn),∴MN為△A1C1D的中位線,
∴N為DC1的中點(diǎn).
(Ⅱ)設(shè)A1B1=1,則A1A=1,A1C1=1,因?yàn)锽為AD的中點(diǎn),所以AD=2,因?yàn)椤鰽BC≌△A1B1C1 ,
所以A1C1=AC,又平面ABC∥平面A1B1C1 , 平面A1B1C1∩平面A1AOC1=A1C1 , 平面ABC∩平面A1AOC1=AO,
∴A1C1∥AC,所以四邊形A1ACC1是平行四邊形,又A1C1=A1A,所以A1ACC1是菱形,又∠C1A1A= ,
A1M= ,∴ ,∴AM⊥A1C1 , ∴AM⊥AC,∵AD⊥AA1 , 平面AA1C1C⊥平面ADB1A1 ,
∴AD⊥平面AA1C1C,∴AD⊥AM,AD⊥AC,∴AM,AD,AC兩兩垂直,
以A為坐標(biāo)原點(diǎn),AD,AC,AM分別為x,y,z軸,
由題意可得:A(0,0,0),D(2,0,0),C(0,1,0),C1( ),∴ =(﹣2,1,0), ,
設(shè)平面CC1D的法向量為: =(x,y,z),則 ,
令z=2 ,可得y=6,x=3,可得 =(3,6,2 ),平面MAD的一個(gè)法向量為: =(0,1,0),
平面MAD與平面CC1D所成的銳二面角的余弦值為:cosθ=|cos |
= = =
【解析】(Ⅰ)連結(jié)A1D,直線MN∥平面ADB1A1 , 推出MN∥A1D,說(shuō)明MN為△A1C1D的中位線,得到N為DC1的中點(diǎn).(Ⅱ)設(shè)A1B1=1,證明AD⊥AM,AD⊥AC,∴AM,AD,AC兩兩垂直,以A為坐標(biāo)原點(diǎn),AD,AC,AM分別為x,y,z軸,求出相關(guān)點(diǎn)的坐標(biāo),求出平面CC1D的法向量,平面MAD的一個(gè)法向量,利用空間向量的數(shù)量積求解即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知圓的參數(shù)方程為(為參數(shù)),若是圓與軸正半軸的交點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,設(shè)過(guò)點(diǎn)的圓的切線為.
(1)求直線的極坐標(biāo)方程;
(2)求圓上到直線的距離最大的點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的短軸長(zhǎng)為2,過(guò)上頂點(diǎn)E和右焦點(diǎn)F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l過(guò)點(diǎn)(1,0),且與橢圓C交于點(diǎn)A,B,則在x軸上是否存在一點(diǎn)T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標(biāo)原點(diǎn)),若存在,求出 t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)M(3,2)到拋物線C:y=ax2(a>0)準(zhǔn)線的距離為4,F(xiàn)為拋物線的焦點(diǎn),點(diǎn)N(l,l),當(dāng)點(diǎn)P在直線l:x﹣y=2上運(yùn)動(dòng)時(shí), 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)的表達(dá)式為f(x)= (c≠0),則函數(shù)f(x)的圖象的對(duì)稱中心為(﹣ , ),現(xiàn)已知函數(shù)f(x)= ,數(shù)列{an}的通項(xiàng)公式為an=f( )(n∈N),則此數(shù)列前2017項(xiàng)的和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (a,b∈R,且a≠0,e為自然對(duì)數(shù)的底數(shù)).
(1)若曲線f(x)在點(diǎn)(e,f(e))處的切線斜率為0,且f(x)有極小值,求實(shí)數(shù)a的取值范圍.
(2)①當(dāng) a=b=l 時(shí),證明:xf(x)+2<0; ②當(dāng) a=1,b=﹣1 時(shí),若不等式:xf(x)>e+m(x﹣1)在區(qū)間(1,+∞)內(nèi)恒成立,求實(shí)數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞減,a=f(log23),b=f(log45),c=f(2 ),則a,b,c滿足( )
A.a<b<c
B.b<a<c
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,P點(diǎn)的極坐標(biāo)為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫(xiě)出點(diǎn)P的直角坐標(biāo)及曲線C的直角坐標(biāo)方程;
(Ⅱ)若Q為曲線C上的動(dòng)點(diǎn),求PQ的中點(diǎn)M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2+S3=8.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com