精英家教網 > 高中數學 > 題目詳情

【題目】△ABC的內角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長;
(3)若c= ,求△ABC的周長的取值范圍.

【答案】
(1)解: 2cosC(acosB+bcosA)=c.

由正弦定理:可得:2cosC(sinAcosB+sinBcosA)=sinC

即2cosCsinC=sinC

∵0<C<π,sinC≠0,

∴cosC=

∴C=


(2)由△ABC的面積為 ,即 absinC= ,

∵C=

∴ab=6.

由c= ,余弦定理:c2=a2+b2﹣2abcosC.

可得:a2+b2﹣ab=7.

即(a+b)2=7+3ab=25.

∴a+b=5.

那么△ABC的周長為:a+b+c=5


(3)∵c= ,C=

正弦定理:a= ,b=

△ABC的周長:a+b+c=2sinA+2sinB+

∵C= ,A+B+C=π

∴B=

則a+b=2sinA+2sinB=2sinA+2sin( )=3sinA+ cosA=2 sin(A+

∵0<A ,

<A+

<2 sin(A+

<a+b

∴△ABC的周長的取值范圍為:(2 ,4 ].


【解析】1、由正弦定理:可得:2cosC(sinAcosB+sinBcosA)=sinC,∵0<C<π,sinC≠0,∴cosC= ∴C=
2、由△ABC的面積為 ,即 可得ab=6.由c= ,余弦定理可得a+b=5,所以△ABC的周長為:a+b+c=5 +
3、根據題意由正玄定理可得,ABC的周長:a+b+c=2sinA+2sinB+ ,∵C= ,A+B+C=π ,∴B= A 得到a+b=2sinA+2sinB=2sinA+2sin=3sinA+ cosA=2 sin.∵0<A < ,∴ <A+ < ,即 <a+b ≤ 2,得到△ABC的周長的取值范圍為:(2 ,4 ].

【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)設Sn為數列{an}的前n項的和,求Sn;
(3)設bn=a2n﹣1+a2n , 是否存正整數i,j,k(i<j<k),使得bi , bj , bk成等差數列?若存在,求出所有滿足條件的i,j,k;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數 ,則滿足f(x)+f(x﹣1)≥2的x的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某位股民購進某只股票,在接下來的交易時間內,他的這只股票先經歷了 次漲停(每次上漲 ),又經歷了 次跌停(每次下跌 ),則該股民這只股票的盈虧情況(不考慮其他費用)是( )
A.略有盈利
B.略有虧損
C.沒有盈利也沒有虧損
D.無法判斷盈虧情況

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】觀察下列各式: C =40;
C +C =41;
C +C +C =42;
C +C +C +C =43;

照此規(guī)律,當n∈N*時,
C +C +C +…+C =

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣x,
(1)求h(x)的最大值;
(2)若關于x的不等式xf(x)≥﹣2x2+ax﹣12對一切x∈(0,+∞)恒成立,求實數a的取值范圍;
(3)若關于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,其中e是自然對數的底數,求實數b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計


(2)判斷是否有90%的把握認為“空間想象能力突出”與性別有關;
(3)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數為ξ,求隨機變量ξ的分布列和數學期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數y=f(x)圖象上不同的兩點M(x1 , y1),N(x2 , y2)處的切線斜率分別是kM , kN , 那么規(guī)定Φ(M,N)= 叫做曲線y=f(x)在點M與點N之間的“彎曲度”.設曲線f(x)=x3+2上不同兩點M(x1 , y1),N(x2 , y2),且x1x2=1,則該曲線在點M與點N之間的“彎曲度”的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的S的值為64,則判斷框內可填入的條件是(
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?

查看答案和解析>>

同步練習冊答案