【題目】為研究男女同學空間想象能力的差異,孫老師從高一年級隨機選取了20名男生、20名女生,進行空間圖形識別測試,得到成績莖葉圖如下,假定成績大于等于80分的同學為“空間想象能力突出”,低于80分的同學為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,

空間想象能力突出

空間想象能力正常

合計

男生

女生

合計


(2)判斷是否有90%的把握認為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學中隨機選取男生2名、女生2名,記其中成績超過90分的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望. 下面公式及臨界值表僅供參考:

P(X2≥k)

0.100

0.050

0.010

k

2.706

3.841

6.635

【答案】
(1)

空間想象能力突出

空間想象能力正常

合計

男生

7

13

20

女生

4

16

20

合計

11

29

40


(2)由公式 ,計算得X2≈1.129,

因為X2<2.706,所以沒有90%的把握認為“空間想象能力突出”與性別有關(guān)


(3)解: , , , , ,

所以ξ的分布列是:

ξ

0

1

2

3

4

P

數(shù)學期望是:


【解析】(1)2×2列聯(lián)表如下,再利用X2計算公式可得結(jié)論.(3)利用互斥事件、獨立事件的概率計算公式可得ξ的分布列及其數(shù)學期望計算公式.
【考點精析】本題主要考查了離散型隨機變量及其分布列的相關(guān)知識點,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,圓C的方程為ρ=2acosθ(a>0),以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系,設直線l的參數(shù)方程為 (t為參數(shù)),若直線l與圓C恒有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知命題P:函數(shù) 的定義域為R;命題q:x∈R,使不等式a>e2x﹣ex成立;命題“p∨q”為真命題,“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長;
(3)若c= ,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點(x0 , y0)在x2+y2=r2(r>0)外,則直線x0x+y0y=r2與圓x2+y2=r2的位置關(guān)系為( )
A.相交
B.相切
C.相離
D.相交、相切、相離三種情況均有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P(x0 , y0)(x0≠±a)是雙曲線E: 上一點,M,N分別是雙曲線E的左右頂點,直線PM,PN的斜率之積為
(1)求雙曲線的離心率;
(2)過雙曲線E的右焦點且斜率為1的直線交雙曲線于A,B兩點,O為坐標原點,C為雙曲線上一點,滿足 ,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
(1)求 的夾角θ;
(2)求| + |和| |.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=sin(ωx+φ)(x∈R,ω>0,0≤φ<2π)的部分圖象如圖,則函數(shù)表達式為;若將該函數(shù)向左平移1個單位,再保持縱坐標不變,橫坐標縮短為原來的 倍得到函數(shù)g(x)=

查看答案和解析>>

同步練習冊答案