【題目】如圖,矩形所在的平面和平面互相垂直,等腰梯形中,,,,,,分別為,的中點(diǎn),為底面的重心.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
【答案】(1)證明詳見解析;(2).
【解析】
(1)連交于,則為中點(diǎn),連,根據(jù)已知可證,,進(jìn)而證明平面平面,即可證明結(jié)論;
(2)矩形所在的平面和平面互相垂直,,可證平面,可得,在中,由余弦定理求出,推斷出,得到,可證明平面,可知為直線與平面所成角的角,解直角三角形,即可求出結(jié)論.
(1)連交于,則為中點(diǎn),連,
又為的中點(diǎn),平面,
平面平面,
分別為的中點(diǎn),平面,
平面平面,
平面,
平面平面平面,
平面;
(2)平面平面,平面平面,
,平面平面,
,又,
由余弦定理可得,
,
平面,所以為直線與平面所成角的角,
在中,,
所以直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),證明:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人準(zhǔn)備投資1200萬元辦一所中學(xué),為了考慮社會(huì)效益和經(jīng)濟(jì)效益,對(duì)該地區(qū)教育市場(chǎng)進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級(jí)為單位).
市場(chǎng)調(diào)查表:
班級(jí)學(xué)生數(shù) | 配備教師數(shù) | 硬件建設(shè)費(fèi)(萬元) | 教師年薪(萬元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根據(jù)物價(jià)部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費(fèi)標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計(jì)除書本費(fèi)、辦公費(fèi)外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以20至30個(gè)班為宜(含20個(gè)班與30個(gè)),教師實(shí)行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個(gè)班,高中編制為個(gè)班,請(qǐng)你合理地安排招生計(jì)劃,使年利潤(rùn)最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗(yàn)計(jì)算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與軸,軸分別交于,,線段的中垂線與拋物線有兩個(gè)不同的交點(diǎn)、.
(1)求的取值范圍;
(2)是否存在,使得,,,四點(diǎn)共圓,若存在,請(qǐng)求出的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點(diǎn),且與圓相切.
(1)求的值;
(2)動(dòng)點(diǎn)在拋物線的準(zhǔn)線上,動(dòng)點(diǎn)在上,若在點(diǎn)處的切線交軸于點(diǎn),設(shè).求證點(diǎn)在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓1(a>b>0)的左右焦點(diǎn)分別為F1F2,左右頂點(diǎn)分別為AB,上頂點(diǎn)為T,且△TF1F2為等邊三角形.
(1)求此橢圓的離心率e;
(2)若直線y=kx+m(k>0)與橢圓交與CD兩點(diǎn)(點(diǎn)D在x軸上方),且與線段F1F2及橢圓短軸分別交于點(diǎn)MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)探究直線l與曲線C2的位置關(guān)系,并說明理由;
(2)若曲線C3的極坐標(biāo)方程為,且曲線C3與曲線C1、C2分別交于M、N兩點(diǎn),求|OM|2|ON|2的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com