【題目】在中,角、、所對的邊分別為、、,.
(1)若,求的值;
(2)若,求的面積的最大值.
【答案】(1)2;(2).
【解析】
(1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinA,sinB的值,利用正弦定理即可得解;
(2)由余弦定理,基本不等式可求bc,進(jìn)而根據(jù)三角形面積公式即可計(jì)算得解.
解:(1)∵在△ABC中,角A、B、C所對的邊分別為a、b、c,cosA,cosB,
∴sinA,sinB,
∴由正弦定理可得:2.
(2)∵a,cosA.sinA,
∴由余弦定理a2=b2+c2﹣2bccosA,可得:3=b2+c2bc≥2bcbcbc,可得:bc,當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立,
∴S△ABCbcsinA,當(dāng)且僅當(dāng)b=c時(shí)等號(hào)成立,
∴△ABC的面積的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足.
(1)證明:數(shù)列為等差數(shù)列;
(2)設(shè)數(shù)列的前n項(xiàng)和為,若,且對任意的正整數(shù)n,都有,求整數(shù)的值;
(3)設(shè)數(shù)列滿足,若,且存在正整數(shù)s,t,使得是整數(shù),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有四座城市、、、,其中在的正東方向,且與相距,在的北偏東方向,且與相距;在的北偏東方向,且與相距,一架飛機(jī)從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時(shí)飛機(jī)距離城市有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求證:函數(shù)恰有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)、的定義域均為,若對任意,且,具有,則稱函數(shù)為上的單調(diào)非減函數(shù),給出以下命題:① 若關(guān)于點(diǎn)和直線()對稱,則為周期函數(shù),且是的一個(gè)周期;② 若是周期函數(shù),且關(guān)于直線對稱,則必關(guān)于無窮多條直線對稱;③ 若是單調(diào)非減函數(shù),且關(guān)于無窮多個(gè)點(diǎn)中心對稱,則的圖象是一條直線;④ 若是單調(diào)非減函數(shù),且關(guān)于無窮多條平行于軸的直線對稱,則是常值函數(shù);以上命題中,所有真命題的序號(hào)是_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐如圖的展開圖如圖2,其中四邊形ABCD為邊長等于的正方形,和均為正三角形.
(1)證明:平面平面ABC;
(2)若M是PC的中點(diǎn),點(diǎn)N在線段PA上,且滿足,求直線MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),定義函數(shù),給出下列命題:①;②函數(shù)是奇函數(shù);③當(dāng)時(shí),若,,總有成立,其中所有正確命題的序號(hào)是( )
A.②B.①②C.③D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記邊長為1的正六邊形的六個(gè)頂點(diǎn)分別為、、、、、,集合,在中任取兩個(gè)元素、,則的概率為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程為,以極點(diǎn)為原點(diǎn),極軸所在直線為軸建立直角坐標(biāo)系.過點(diǎn)作傾斜角為的直線交曲線于,兩點(diǎn).
(1)求曲線的直角坐標(biāo)方程,并寫出直線的參數(shù)方程;
(2)過點(diǎn)的另一條直線與關(guān)于直線對稱,且與曲線交于,兩點(diǎn),求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com