【題目】已知的頂點, 在橢圓上, 在直線上,且.
()求橢圓的離心率.
()當邊通過坐標原點時,求的長及的面積.
()當,且斜邊的長最大時,求所在直線的方程.
【答案】(1);(2),面積為2;(3).
【解析】試題分析:(1)由橢圓方程得, , ,由即可得解;
(2)所直線的方程為與橢圓聯(lián)立得, ,原點到直線的距離,從而得面積;
(3)設所在直線的方程為,與橢圓聯(lián)立得,設, 兩點坐標分別為, , , , 利用韋達定理代入求最值即可.
試題解析:
()將橢圓化為標準方程為,
∴, , ,
∴橢圓的離心率.
()∵,且邊通過點,∴所直線的方程為.
設, 兩點坐標分別為, .
由,得.
∴.
又∵邊長的高等于原點到直線的距離,∴,
∴的面積.
()設所在直線的方程為,
由,得.
∵, 在橢圓上,∴.
設, 兩點坐標分別為, ,則, ,
∴.
又∵的長等于點到直線的距離,即,
∴,
∴當時, 邊最大,且滿足,
此時所在直線的方程為.
科目:高中數(shù)學 來源: 題型:
【題目】學校某研究性學習小組在對學生上課注意力集中情況的調(diào)查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數(shù)y與聽課時間x(單位:分鐘)之間的關(guān)系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數(shù)圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據(jù)專家研究,當注意力指數(shù)大于62時,學習效果最佳.
(1)試求y=f(x)的函數(shù)關(guān)系式;
(2)教師在什么時段內(nèi)安排內(nèi)核心內(nèi)容,能使得學生學習效果最佳?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)四邊形的頂點在橢圓上,且對角線、過原點,若,
(1)求的最值;
(2)求證;四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,AB∥CD ,且∠BAP=∠CDP =90°.
(1).證明:平面PAB⊥平面PAD;
(2).若PA=PD=AB=DC, ∠APD =90°,且四棱錐PABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱柱中,底面是梯形,,側(cè)面為菱形,.
(Ⅰ)求證:;
(Ⅱ)若,,直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)設函數(shù),試討論函數(shù)的單調(diào)性;
(Ⅱ)設函數(shù) ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,,則下列結(jié)論正確的是( )
A. 把上所有的點向右平移個單位長度,再把所有圖象上各點的橫坐標縮短到原來的倍(縱坐標不變),得到曲線
B. 把上所有點向左平移個單位長度,再把所得圖象上各點的橫坐標伸長到原來的3倍(縱坐標不變),得到曲線
C. 把上各點的橫坐標縮短到原來的倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
D. 把上各點的橫坐標伸長到原來的3倍(縱坐標不變),再把所得圖象上所有的點向左平移個單位長度,得到曲線
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com