命題:“若x2<1,則-1<x<1”的否命題是______命題.(填“真”或“假”之一)
∵“若x2<1,則-1<x<1”的否命題為:“若x≥1或x≤-1,則x2≥1”,顯然是真命題.
故答案為:真.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

寫出命題“若abc=0,則a,b,c至少有兩個為0”的逆命題、否命題和逆否命題,并判斷真假.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b,c是三條直線,α,β是兩個平面,b?α,c?α,則下列命題不成立的是(  )
A.若αβ,c⊥α,則c⊥β
B.若a是c在α內(nèi)的射影,a⊥b,則b⊥c
C.“若b⊥β,則α⊥β”的逆命題
D.“若bc,則cα”的逆否命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.函數(shù)f(x)=
x2-x4
|x-2|-2
.給出函數(shù)f(x)下列性質(zhì):(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調(diào)遞增;(4)函數(shù)f(x)有兩零點;(5)A、B為函數(shù)f(x)圖象上任意不同兩點,則
2
<|AB|≤2
.則函數(shù)f(x)有關性質(zhì)中正確描述的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f(x)=x3+ax2+bx+c,又k是一個常數(shù),已知當k<0或k>4時,f(x)-k=0只有一個實根,當0<k<4時,f(x)-k=0有三個相異實根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f′(x)=0有且只有一個相同的實根.
(2)f(x)=0和f′(x)=0有且只有一個相同的實根.
(3)f(x)+3=0的任一實根大于f(x)-1=0的任一實根.
(4)f(x)+5=0的任一實根小于f(x)-2=0的任一實根.
其中錯誤命題的個數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列四個命題
①命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
②若0<a<1,則f(x)=x2+ax-3只有一個零點;
③若lga+lgb=lg(a+b),則a+b的最小值為4;
④對于任意實數(shù)x,有f(-x)=f(x),且當x>0時,f'(x)>0,則當x<0時,f'(x)<0.
其中正確的命題有______(填所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)f(x)=x2+e,(e=2.718…),則下列命題正確的是( 。
A.?a∈(-∞,e),?x∈(0,+∞),f(x)<aB.?a∈(e,+∞),?x∈(0,+∞),f(x)<a
C.?x∈(0,+∞),?a∈(e,+∞),f(x)<aD.?x∈(-∞,0),?a∈(e,+∞),f(x)>a

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知命題p:如果x<1,則x<2;命題q:?x∈R,x2+1=0,則( 。
A.p∨q是假命題B.p是假命題
C.p∧q是假命題D.?q是假命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法中正確的是(  )
A.若p∨q為真命題,則p,q均為真命題
B.命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”
C.“a≥5”是“?x∈[1,2],x2-a≤0恒成立“的充要條件
D.在△ABC中,“a>b”是“sinA>sinB”的必要不充分條件

查看答案和解析>>

同步練習冊答案