【題目】設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記.

1)求數(shù)列與數(shù)列的通項(xiàng)公式;

2)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù),都有;

3)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請(qǐng)說(shuō)明理由.

【答案】1;(2)證明見(jiàn)解析;(3)不存在,理由見(jiàn)解析

【解析】

1)利用可得數(shù)列是等比數(shù)列,根據(jù)等比數(shù)列的通項(xiàng)公式可得,進(jìn)而可得;

2)通過(guò)放縮可得,再按照兩種情況分別證明即可;

3)通過(guò)放縮得到,再分為奇數(shù)和為偶數(shù)兩種情況討論即可得到答案.

1)令,得,得,

因?yàn)?/span>,所以,

所以,

所以

因?yàn)?/span>,所以,

所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

所以,.

2)由

,

當(dāng)時(shí),,所以

當(dāng)時(shí),

,

∴對(duì)任意正整數(shù)都有.

3,,

,

當(dāng)為偶數(shù)時(shí),,

當(dāng)為奇數(shù)時(shí),,

所以存在正整數(shù),使得成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問(wèn)題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問(wèn)題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)求出的值;

(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);

(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再?gòu)倪@5人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,求這2組恰好抽到2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓C.

1)求圓C的方程;

2)若圓C與直線交于AB兩點(diǎn),且,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若Sm-1=-4,Sm=0,Sm+2=14(m≥2,且m∈N*).

(1)求m的值;

(2)若數(shù)列{bn}滿足=log2bn(n∈N*),求數(shù)列{(an+6)·bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年寒假期間新冠肺炎肆虐,全國(guó)人民眾志成城抗疫情.某市要求全體市民在家隔離,同時(shí)決定全市所有學(xué)校推遲開(kāi)學(xué).某區(qū)教育局為了讓學(xué)生停課不停學(xué),要求學(xué)校各科老師每天在網(wǎng)上授課輔導(dǎo),每天共200分鐘.教育局為了了解高三學(xué)生網(wǎng)上學(xué)習(xí)情況,上課幾天后在全區(qū)高三學(xué)生中采取隨機(jī)抽樣的方法抽取了80名學(xué)生(其中男女生恰好各占一半)進(jìn)行問(wèn)卷調(diào)查,按男女生分為兩組,再將每組學(xué)生在線學(xué)習(xí)時(shí)間(分鐘)分為5,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學(xué)生有3000人(男女生人數(shù)大致相等),以頻率估計(jì)概率回答下列問(wèn)題:

1)估計(jì)全區(qū)高三學(xué)生中網(wǎng)上學(xué)習(xí)時(shí)間不超過(guò)40分鐘的人數(shù);

2)在調(diào)查的80名高三學(xué)生且學(xué)習(xí)時(shí)間不超過(guò)40分鐘的學(xué)生中,男女生按分層抽樣的方法抽取6.若從這6人中隨機(jī)抽取2人進(jìn)行電話訪談,求至少抽到1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在直角梯形ABCD中,∠ADC=90°,CDAB,ADCDAB=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC,如圖②所示.

(1)證明:平面ABD⊥平面BCD

(2)求二面角DABC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2022年第24屆冬奧會(huì)將在北京舉行。為了推動(dòng)我國(guó)冰雪運(yùn)動(dòng)的發(fā)展,京西某區(qū)興建了“騰越冰雪運(yùn)動(dòng)基地。通過(guò)對(duì)來(lái)“騰越參加冰雪運(yùn)動(dòng)的100員運(yùn)動(dòng)員隨機(jī)抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率。

身份

小學(xué)生

初中生

高中生

大學(xué)生

職工

合計(jì)

人數(shù)

40

20

10

20

10

100

對(duì)10名高中生又進(jìn)行了詳細(xì)分類如下表:

年級(jí)

高一

高二

高三

合計(jì)

人數(shù)

4

4

2

10

(1)求來(lái)“騰越參加冰雪運(yùn)動(dòng)的人員中高中生的概率;

(2)根據(jù)統(tǒng)計(jì),春節(jié)當(dāng)天來(lái)“騰越”參加冰雪運(yùn)動(dòng)的人員中,小學(xué)生是340人,估計(jì)高中生是多少人?

(3)在上表10名高中生中,從高二,高三6名學(xué)生中隨機(jī)選出2人進(jìn)行情況調(diào)查,至少有一名高三學(xué)生的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列說(shuō)法正確的是(

A.是函數(shù)的零點(diǎn),則的整數(shù)倍

B.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱

C.函數(shù)的圖象與函數(shù)的圖象相同

D.函數(shù)的圖象可由的圖象先向上平移個(gè)單位長(zhǎng)度,再向左平移個(gè)單位長(zhǎng)度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形是正方形,平面,,,分別為,的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求證:平面平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案