【題目】已知函數(shù).
(1)討論的極值點(diǎn)的個數(shù);
(2)設(shè)函數(shù),,為曲線上任意兩個不同的點(diǎn),設(shè)直線的斜率為,若恒成立,求的取值范圍.
【答案】(1)當(dāng)時,極值點(diǎn)的個數(shù)為0;當(dāng)時,的極值點(diǎn)的個數(shù)為1;當(dāng)或時,的極值點(diǎn)個數(shù)為2.
(2)
【解析】
(1)函數(shù)求導(dǎo)得的根,對根進(jìn)行討論得到函數(shù)單調(diào)區(qū)間從而求得極值.
(2)令,求出.等價轉(zhuǎn)換得,構(gòu)造新函數(shù)求導(dǎo)轉(zhuǎn)化為不等式恒成立問題求解.
解:(1)函數(shù)的定義域?yàn)?/span>,
.
令,得或.
①當(dāng),即時,
在和上,,在上,,當(dāng)時,取得極大值,當(dāng)時,取得極小值,故有兩個極值點(diǎn);
②當(dāng),即時,
在和上,,在上,,同上可知有兩個極值點(diǎn);
③當(dāng),即時,
,在上單調(diào)遞增,無極值點(diǎn);
④當(dāng),即時,
在上,,在上,,當(dāng)時,取得極小值,無極大值,故只有一個極值點(diǎn).
綜上,當(dāng)時,極值點(diǎn)的個數(shù)為0;當(dāng)時,的極值點(diǎn)的個數(shù)為1;當(dāng)或時,的極值點(diǎn)個數(shù)為2.
(2)令,則,設(shè),,,則.
不妨設(shè),則由恒成立,可得恒成立.
令,則在上單調(diào)遞增,所以在上恒成立,即恒成立.
則恒成立,即恒成立.
又,所以恒成立,則,
因?yàn)?/span>,所以,
解得,即的取值范圍為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的側(cè)棱和底面邊長相等,在這個正四棱錐的條棱中任取兩條,按下列方式定義隨機(jī)變量的值:
若這兩條棱所在的直線相交,則的值是這兩條棱所在直線的夾角大小(弧度制);
若這兩條棱所在的直線平行,則;
若這兩條棱所在的直線異面,則的值是這兩條棱所在直線所成角的大小(弧度制).
(1)求的值;
(2)求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,斜率為的直線與x軸交于點(diǎn)A,與y軸交于點(diǎn),過作x 軸的平行線,交于點(diǎn),過作y軸的平行線,交于點(diǎn),再過作x軸的平行線交于點(diǎn),…,這樣依次得線段、、、、…、、,記為點(diǎn)的橫坐標(biāo),則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓C: 上一點(diǎn),點(diǎn)P到橢圓C的兩個焦點(diǎn)的距離之和為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)A,B是橢圓C上異于點(diǎn)P的兩點(diǎn),直線PA與直線交于點(diǎn)M,
是否存在點(diǎn)A,使得?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某外賣平臺為提高外賣配送效率,針對外賣配送業(yè)務(wù)提出了兩種新的配送方案,為比較兩種配送方案的效率,共選取50名外賣騎手,并將他們隨機(jī)分成兩組,每組25人,第一組騎手用甲配送方案,第二組騎手用乙配送方案.根據(jù)騎手在相同時間內(nèi)完成配送訂單的數(shù)量(單位:單)繪制了如下莖葉圖:
(1)根據(jù)莖葉圖,求各組內(nèi)25位騎手完成訂單數(shù)的中位數(shù),已知用甲配送方案的25位騎手完成訂單數(shù)的平均數(shù)為52,結(jié)合中位數(shù)與平均數(shù)判斷哪種配送方案的效率更高,并說明理由;
(2)設(shè)所有50名騎手在相同時間內(nèi)完成訂單數(shù)的平均數(shù),將完成訂單數(shù)超過記為“優(yōu)秀”,不超過記為“一般”,然后將騎手的對應(yīng)人數(shù)填入下面列聯(lián)表;
優(yōu)秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根據(jù)(2)中的列聯(lián)表,判斷能否有的把握認(rèn)為兩種配送方案的效率有差異.
附:,其中.
0.05 | 0.010 | 0.005 | |
3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點(diǎn)M作與直線的夾角為的直線,交于點(diǎn)N,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)城鄉(xiāng)居民儲蓄存款年底余額(單位:億元)如圖所示,下列判斷一定不正確的是( )
A.城鄉(xiāng)居民儲蓄存款年底余額逐年增長
B.農(nóng)村居民的存款年底余額所占比重逐年上升
C.到2019年農(nóng)村居民存款年底總余額已超過了城鎮(zhèn)居民存款年底總余額
D.城鎮(zhèn)居民存款年底余額所占的比重逐年下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)己知函數(shù)有兩個極值點(diǎn)
①比較與的大;
②若函數(shù)在區(qū)間上有且只有一個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對該市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了50人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這50人根據(jù)其滿意度評分值(百分制)按照,,……分成5組,根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示),計(jì)算,,,的值分別為( )
組別 | 分組 | 頻數(shù) | 頻率 |
第1組 | 8 | 0.16 | |
第2組 | ■ | ||
第3組 | 20 | 0.40 | |
第4組 | ■ | 0.08 | |
第5組 | 2 | ||
合計(jì) | ■ | ■ |
A.16,0.04,0.032,0.004B.16,0.4,0.032,0.004
C.16,0.04,0.32,0.004D.12,0.04,0.032,0.04
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com