【題目】已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).

)設(shè)是函數(shù)的導(dǎo)函數(shù),求函數(shù)在區(qū)間上的最小值;

)若,函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍

【答案】)當(dāng)時(shí),;當(dāng)時(shí),;

當(dāng)時(shí),.的范圍為.

【解析】

試題分析:()易得,再對(duì)分情況確定的單調(diào)區(qū)間,根據(jù)上的單調(diào)性即可得上的最小值.)設(shè)在區(qū)間內(nèi)的一個(gè)零點(diǎn),注意到.聯(lián)系到函數(shù)的圖象可知,導(dǎo)函數(shù)在區(qū)間內(nèi)存在零點(diǎn),在區(qū)間內(nèi)存在零點(diǎn),即在區(qū)間內(nèi)至少有兩個(gè)零點(diǎn). 由()可知,當(dāng)時(shí),內(nèi)都不可能有兩個(gè)零點(diǎn).所以.此時(shí),上單調(diào)遞減,在上單調(diào)遞增,因此,且必有.得:,代入這兩個(gè)不等式即可得的取值范圍.

試題解答:(

當(dāng)時(shí),,所以.

當(dāng)時(shí),由.

,則;若,則.

所以當(dāng)時(shí),上單調(diào)遞增,所以.

當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增,所以.

當(dāng)時(shí),上單調(diào)遞減,所以.

)設(shè)在區(qū)間內(nèi)的一個(gè)零點(diǎn),則由可知,

在區(qū)間上不可能單調(diào)遞增,也不可能單調(diào)遞減.

不可能恒為正,也不可能恒為負(fù).

在區(qū)間內(nèi)存在零點(diǎn).

同理在區(qū)間內(nèi)存在零點(diǎn).

所以在區(qū)間內(nèi)至少有兩個(gè)零點(diǎn).

由()知,當(dāng)時(shí),上單調(diào)遞增,故內(nèi)至多有一個(gè)零點(diǎn).

當(dāng)時(shí),上單調(diào)遞減,故內(nèi)至多有一個(gè)零點(diǎn).

所以.

此時(shí),上單調(diào)遞減,在上單調(diào)遞增,

因此,必有

.

得:,有

.

解得.

當(dāng)時(shí),在區(qū)間內(nèi)有最小值.

,則

從而在區(qū)間上單調(diào)遞增,這與矛盾,所以.

,

故此時(shí)內(nèi)各只有一個(gè)零點(diǎn).

由此可知上單調(diào)遞增,在 上單調(diào)遞減,在上單調(diào)遞增.

所以,,

內(nèi)有零點(diǎn).

綜上可知,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為為橢圓C的左右焦點(diǎn),離心率為,短軸長為2。

(1)求橢圓C的方程;

(2)如圖,橢圓C的內(nèi)接平行四邊形ABCD的一組對(duì)邊分別過橢圓的焦點(diǎn),求該平行四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2015121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表:

日期

121

122

123

124

125

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是121日與125日的兩組數(shù)據(jù),請(qǐng)根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程bx+a

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間和極值點(diǎn);

2)若單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售某海鮮,統(tǒng)計(jì)了春節(jié)前后50天該海鮮的需求量,單位:公斤),其頻率分布直方圖如圖所示,該海鮮每天進(jìn)貨1次,商店每銷售1公斤可獲利50元;若供大于求,剩余的削價(jià)處理,每處理1公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,銷售1公斤可獲利30元.假設(shè)商店每天該海鮮的進(jìn)貨量為14公斤,商店的日利潤為元.

(1)求商店日利潤關(guān)于需求量的函數(shù)表達(dá)式;

(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替.

①求這50天商店銷售該海鮮日利潤的平均數(shù);

②估計(jì)日利潤在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個(gè)公共點(diǎn),直線與橢圓只有一個(gè)公共點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知?jiǎng)又本過橢圓的左焦點(diǎn),且與橢圓分別交于兩點(diǎn),試問:軸上是否存在定點(diǎn),使得為定值?若存在,求出該定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)恒成立,求的取值范圍;

(3)設(shè)函數(shù)的極值點(diǎn)為,當(dāng)變化時(shí),點(diǎn)(,)構(gòu)成曲線M.證明:任意過原點(diǎn)的直線,與曲線M均僅有一個(gè)公共點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案