【題目】給定正整數(shù),將分拆成若干個互異正整數(shù)的和,這些正整數(shù)的乘積記為.對所有不同的分法,求的最大值.

【答案】

【解析】

設(shè)分拆成時,達到最大值.

下面證明:具有以下4條性質(zhì).

(1);

(2);

3)最多有一個,使;

(4).

1)若有某個,必定是.

,則,矛盾.

2)若有某個,使得,則令,.

,知,矛盾.

3)若有某個,使得,,則令.

,知,矛盾.

(4)若,則由知,存在,且由前面的討論有或6.

(ⅰ)當時,將分拆成,由,知,矛盾.

(ⅱ)當時,將分拆成,由,知,矛盾.

,將分拆成,由,知,矛盾.

綜上所述,當達到最大時,的分拆只有兩種形式:

第一種形式為

第二種形式為.

同時存在上述兩種類型的分拆,即

其中,,.

我們證明必有.

實際上,若,移項得.矛盾.

同樣可知,亦矛盾.

于是,.從而,,即.

此時,對應(yīng)的值之比為.

因此,當同時存在兩種分拆時,第一種形式的分拆使達到最大.

取劃分數(shù)列,則對給定的整數(shù),總存在確定的整數(shù),

使得.

,則.

解得,即.

于是,對給定的正整數(shù),總存在確定的整數(shù)、,使得.

(1)當時,

,

這是第二種形式的分拆,其中,.

存在第一種形式的分拆,則由上面討論,必有,即

,這與矛盾.

于是,只存在第二種形式的分拆,此時,.

2)當時,,這是第一種形式的分拆,其中,.此時,.

綜上所述,設(shè)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值.

1)由以往統(tǒng)計數(shù)據(jù)知,設(shè)備的性能根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率);①;②;③,評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁.為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,試判斷設(shè)備的性能等級

2)將直徑小于等于或直徑大于的零件認為是次品.

i)若從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,求恰有一件次品的概率;

ii)若從樣本中隨意抽取2件零件,計算其中次品個數(shù)分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,平面,.

1)證明:平面平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤記為(單位:元),寫出的函數(shù)關(guān)系式;

(2)如果將統(tǒng)計的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤不少于1950元的人數(shù)之和,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)是否存在實數(shù),使得函數(shù)的極值大于?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,平面底面,.

(Ⅰ)判斷平面與平面是否垂直,并給出證明;

(Ⅱ)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求上的最值;

(2)設(shè),若當,且時,,求整數(shù)的最小值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個變量相關(guān)性越強,則相關(guān)系數(shù)r就越接近于1;

③在回歸直線方程中,當解釋變量每增加一個單位時,預(yù)報變量平均減少0.5個單位;

④兩個模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線恒過樣本點的中心,且至少過一個樣本點;

⑥若的觀測值滿足≥6.635,我們有99%的把握認為吸煙與患肺病有關(guān)系,那么在100個吸煙的人中必有99人患有肺;

⑦從統(tǒng)計量中得知有95%的把握認為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯誤. 其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案