已知拋物線的準線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
(1)y2=4x;(2)點N坐標為.

試題分析:本題主要考查拋物線的標準方程及其幾何性質(zhì)、圓的標準方程及其幾何性質(zhì)、圓的切線的性質(zhì)等基礎(chǔ)知識,考查學(xué)生分析問題解決問題的能力和計算能力.第一問,利用拋物線的準線,得到M點的坐標,利用圓的方程得到圓心C的坐標,在中,可求出,在中,利用相似三角形進行角的轉(zhuǎn)換,得到的長,而,從而解出P的值,即得到拋物線的標準方程;第二問,設(shè)出N點的坐標,利用N、C點坐標寫出圓C的方程,利用點C的坐標寫出圓C的方程,兩方程聯(lián)立,由于P、Q是兩圓的公共點,所以聯(lián)立得到的方程即為直線PQ的方程,而O點在直線上,代入點O的坐標,即可得到s、t的值,即得到N點坐標.
試題解析:(1)由已知得,C(2,0).
設(shè)ABx軸交于點R,由圓的對稱性可知,
于是,
所以,即,p=2.
故拋物線E的方程為y2=4x.          5分
 
(2)設(shè)N(s,t).
P,QNC為直徑的圓D與圓C的兩交點.
D方程為,
x2y2-(s+2)xty+2s=0.       ①
又圓C方程為x2y2-4x+3=0.       ②
②-①得(s-2)xty+3-2s=0.       ③  9分
P,Q兩點坐標是方程①和②的解,也是方程③的解,從而③為直線PQ的方程.
因為直線PQ經(jīng)過點O,所以3-2s=0,
故點N坐標為.       12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P是拋物線y2=2x上的動點,點P到準線的距離為d,且點P在y軸上的射影是M,點A(,4),則|PA|+|PM|的最小值是
A.
B.4
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線型拱橋的頂點距水面米時,量得水面寬為米.則水面升高米后,水面
寬是____________米(精確到米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線的方程為,過點作直線與拋物線相交于兩點,點的坐標為,連接,設(shè)軸分別相交于兩點.如果的斜率與的斜率的乘積為,則的大小等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點到準線的距離是(   )
A.2B.1 C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準線方程是  .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的準線為(    )
A.x= 8B.x=-8
C.x=4D.x=-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點坐標是_____________.

查看答案和解析>>

同步練習冊答案