拋物線
的焦點到準線的距離是( )
A.2 | B.1 | C. | D. |
試題分析:由拋物線標準方程
中
的幾何意義為:拋物線的焦點到準線的距離,又
,故選
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線C
1:x
2=y,圓C
2:x
2+(y-4)
2=1的圓心為點M
(1)求點M到拋物線C
1的準線的距離;
(2)已知點P是拋物線C
1上一點(異于原點),過點P作圓C
2的兩條切線,交拋物線C
1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的準線與x軸交于點M,過點M作圓
的兩條切線,切點為A、B,
.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
的焦點為
,點
為拋物線上的一點,其縱坐標為
,
.
(1)求拋物線的方程;
(2)設
為拋物線上不同于
的兩點,且
,過
兩點分別作拋物線的切線,記兩切線的交點為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系xOy中,拋物線C的頂點在原點,焦點F的坐標為(1,0).
(1)求拋物線C的標準方程;
(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知P是拋物線y
2=4x上一動點,則點P到直線l:2x-y+3=0與到y(tǒng)軸的距離之和的最小值是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
拋物線
上到其焦點
距離為5的點有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,已知拋物線E:y
2=x與圓M:(x-4)
2+y
2=r
2(r>0)相交于A、B、C、D四個點.
(1)求r的取值范圍;
(2)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
拋物線
的焦點坐標為.
查看答案和解析>>