如圖,已知拋物線的方程為,過點作直線與拋物線相交于兩點,點的坐標為,連接,設(shè)軸分別相交于兩點.如果的斜率與的斜率的乘積為,則的大小等于.

試題分析:設(shè)直線PQ的方程為:y=kx-1,P(x1,y1),Q(x2,y2),


則x1+x2=2pk,x1x2=2p,
kBP,kBQ,
kBP+kBQ+=+===0,即kBP+kBQ=0①
又kBP•kBQ=-3②,
聯(lián)立①②解得kBP,kBQ=?,
所以∠BNM=,∠BMN=,
故∠MBN=π-∠BNM-∠BMN=.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知定點F(1,0),點軸上運動,點軸上,點
為平面內(nèi)的動點,且滿足,
(1)求動點的軌跡的方程;
(2)設(shè)點是直線上任意一點,過點作軌跡的兩條切線,,切點分別為,,設(shè)切線,的斜率分別為,直線的斜率為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的準線與x軸交于點M,過點M作圓的兩條切線,切點為A、B,.
(1)求拋物線E的方程;
(2)過拋物線E上的點N作圓C的兩條切線,切點分別為P、Q,若P,Q,O(O為原點)三點共線,求點N的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為,點為拋物線上的一點,其縱坐標為,.
(1)求拋物線的方程;
(2)設(shè)為拋物線上不同于的兩點,且,過兩點分別作拋物線的切線,記兩切線的交點為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的頂點在原點,焦點為,動點在拋物線上,點,則的最小值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線的焦點為F,過點P(2,0)的直線交拋物線于A,B兩點,直線AF,BF分別于拋物線交于點C,D.設(shè)直線AB,CD的斜率分別為,則(    )
A.               B.             C.1              D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線的焦點作直線l交拋物線于A,B兩點,分別過A,B作拋物線的切線,則的交點P的軌跡方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,已知三點,直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為,而直線AB恰好經(jīng)過拋物線)的焦點F并且與拋物線交于P、Q兩點(P在Y軸左側(cè)).則(    )
A.9B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,拋物線y2=4x的焦點為F,點P在拋物線上,若PF=2,則點P到拋物線頂點O的距離是  

查看答案和解析>>

同步練習冊答案