設(shè)數(shù)列的前項(xiàng)和為,且滿(mǎn)足
(1)求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列的每?jī)身?xiàng)之間都按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列,在兩項(xiàng)之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成等差數(shù)列,求的值;
(3)對(duì)于(2)中的數(shù)列,若,并求(用表示).
(1)當(dāng)時(shí),由.又相減得:
,故數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,所以;…………4分
(2)設(shè)兩項(xiàng)之間插入個(gè)數(shù)后,這個(gè)數(shù)構(gòu)成的等差數(shù)列的公差為,則
,又,故……………………………… 8分
(3)依題意,

,考慮到
,則

所以 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是等差數(shù)列,其中   (1).求的通項(xiàng);  
(2).求值;(3)設(shè)數(shù)列的前項(xiàng)和為,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為,
(1)求數(shù)列的通項(xiàng)公式;
(2)等差數(shù)列的各項(xiàng)為正,其前項(xiàng)和為,且,又 成等比數(shù)列,求;
(3)數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足a1=1,an+1>an,且(an+1-an)2-2(an+1+an)+1=0
(1)求a2、a3
(2)猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知等差數(shù)列,首項(xiàng)為1的等比數(shù)列的公比為,且成等比數(shù)列。
(1)求的通項(xiàng)公式;
(2)設(shè)成等差數(shù)列,求k和t的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足,,等比數(shù)列的首項(xiàng)為2,公比為.
(Ⅰ)若,問(wèn)等于數(shù)列中的第幾項(xiàng)?
(Ⅱ)數(shù)列的前項(xiàng)和分別記為,的最大值為,當(dāng)時(shí),試比較的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列中,是數(shù)列的前項(xiàng)和,對(duì)任意,有.函數(shù),數(shù)列的首項(xiàng)
 (Ⅰ)求數(shù)列的通項(xiàng)公式;
 (Ⅱ)令求證:是等比數(shù)列并求通項(xiàng)公式;  
 (Ⅲ)令,,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,,則__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列前n項(xiàng)和為,已知,則m等于(  )
A.38B.20C.10D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案