【題目】已知定圓,定直線,過(guò)的一條動(dòng)直線與直線相交于,與圓相交于, 兩點(diǎn), 是中點(diǎn).
(Ⅰ)當(dāng)與垂直時(shí),求證: 過(guò)圓心.
(Ⅱ)當(dāng),求直線的方程.
(Ⅲ)設(shè),試問(wèn)是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)見解析;(Ⅱ)或.(Ⅲ).
【解析】試題分析:(I)由已知,故,所以直線的方程為,即可證明;(II)當(dāng)直線與軸垂直時(shí),易知符合題意;當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,利用圓心到直線的距離等于半徑,即可求解;(III)當(dāng)與軸垂直時(shí),易得, ,求得;當(dāng)的斜率存在時(shí),設(shè)直線的方程為,代入圓的方程,利用根與系數(shù)的關(guān)系,化簡(jiǎn)即可求解定值.
試題解析:(Ⅰ)由已知,故,所以直線的方程為.
將圓心代入方程易知過(guò)圓心.
(Ⅱ)當(dāng)直線與軸垂直時(shí),易知符合題意;
當(dāng)直線與軸不垂直時(shí),設(shè)直線的方程為,由于,
所以,由,解得.
故直線的方程為或.
(Ⅲ)當(dāng)與軸垂直時(shí),易得, ,又,則,
,故,即.
當(dāng)的斜率存在時(shí),設(shè)直線的方程為,代入圓的方程得
,則.
,即,
.又由得,
則.
故,
綜上, 的值為定值,且.
另解一:連結(jié),延長(zhǎng)交于點(diǎn),由(Ⅰ)知,又于,
故.于是有.
由, ,得.
故.
另解二:連結(jié)并延長(zhǎng)交直線于點(diǎn),連結(jié), ,由(Ⅰ)知,又,
所以四點(diǎn)都在以為直徑的圓上,由相交弦定理得
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,若橢圓與圓:相交于M,N兩點(diǎn),且圓E在橢圓內(nèi)的弧長(zhǎng)為.
(1)求橢圓的方程;
(2)過(guò)橢圓的上焦點(diǎn)作兩條相互垂直的直線,分別交橢圓于A,B、C,D,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足 ,則使不等式a2016>2017成立的所有正整數(shù)a1的集合為( )
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4 .
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線,分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱中,側(cè)棱與底面垂直,,,分別是的中點(diǎn).
(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大;
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)棱底面,且側(cè)棱的長(zhǎng)是,點(diǎn)分別是的中點(diǎn).
(Ⅰ)證明: 平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,0),B(4,3),若A,B,C三點(diǎn)按順時(shí)針方向排列構(gòu)成等邊三角形ABC,且直線BC與x軸交于點(diǎn)D.
(1)求cos∠CAD的值;
(2)求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為菱形,且PA=AD=2, ,E、F分別為AD、PC中點(diǎn).
(1)求點(diǎn)F到平面PAB的距離;
(2)求證:平面PCE⊥平面PBC;
(3)求二面角E﹣PC﹣D的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com