【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4 .
(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x0)2+(y﹣y0)2=3作兩條切線,分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說明理由.
【答案】
(1)
解:拋物線 的焦點(diǎn)為(2 ,0),
由題意可得c=2 ,
△MF1F2面積的最大值為4 ,可得當(dāng)M位于橢圓短軸端點(diǎn)處取得最大值.
即有 b2c=4 ,解得b=2,a2=b2+c2=4+8=12,
則橢圓方程為
(2)
證明:設(shè)直線OA:y=k1x,OB:y=k2x,A(x1,y1),B(x2,y2),
設(shè)過原點(diǎn)圓(x﹣x0)2+(y﹣y0)2=3的切線方程為y=kx,
則有 = ,整理得(x02﹣3)k2﹣2x0y0k+y02﹣3=0,
即有k1+k2= ,k1k2= ,
又因?yàn)? ,所以可求得k1k2= =﹣ ,
將y=k1x代入橢圓方程x2+3y2=12,
得x12= ,則y12= ,
同理可得x22= ,y22= ,
所以|OA|2+|OB|2= +
=
= =16.
所以|OA|2+|OB|2的值為定值16
【解析】(1)求得拋物線的焦點(diǎn),可得c,再由當(dāng)M位于橢圓短軸端點(diǎn)處△MF1F2面積取得最大值.可得b,由a,b,c的關(guān)系求得a,進(jìn)而得到橢圓方程;(2)設(shè)直線OA:y=k1x,OB:y=k2x,A(x1 , y1),B(x2 , y2),設(shè)過原點(diǎn)圓(x﹣x0)2+(y﹣y0)2=3的切線方程為y=kx,運(yùn)用直線和圓相切的條件:d=r,聯(lián)立直線OA、OB方程和橢圓方程,求得A,B的坐標(biāo),運(yùn)用韋達(dá)定理,化簡整理,即可得到定值.
【考點(diǎn)精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種.若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:
交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表 | ||
浮動(dòng)因素 | 浮動(dòng)比率 | |
A1 | 上一個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% |
A2 | 上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% |
A3 | 上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% |
A4 | 上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% |
A6 | 上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(Ⅰ)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定a=950.記X為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)
(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)分別為、,上頂點(diǎn)為B,O為坐標(biāo)原點(diǎn),且向量與的夾角為.
求橢圓的方程;
設(shè),點(diǎn)P是橢圓上的動(dòng)點(diǎn),求的最大值和最小值;
設(shè)不經(jīng)過點(diǎn)B的直線l與橢圓相交于M、N兩點(diǎn),且直線BM、BN的斜率之和為1,證明:直線l過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】柴靜《穹頂之下》的播出,讓大家對(duì)霧霾天氣的危害有了更進(jìn)一步的認(rèn)識(shí),對(duì)于霧霾天氣的研究也漸漸活躍起來,某研究機(jī)構(gòu)對(duì)春節(jié)燃放煙花爆竹的天數(shù)x與霧霾天數(shù)y進(jìn)行統(tǒng)計(jì)分析,得出下表數(shù)據(jù):
x | 4 | 5 | 7 | 8 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預(yù)測燃放煙花爆竹的天數(shù)為的霧霾天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定圓,定直線,過的一條動(dòng)直線與直線相交于,與圓相交于, 兩點(diǎn), 是中點(diǎn).
(Ⅰ)當(dāng)與垂直時(shí),求證: 過圓心.
(Ⅱ)當(dāng),求直線的方程.
(Ⅲ)設(shè),試問是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:和點(diǎn),P是圓上一點(diǎn),線段BP的垂直平分線交CP于M點(diǎn),則M點(diǎn)的軌跡方程為______;若直線l與M點(diǎn)的軌跡相交,且相交弦的中點(diǎn)為,則直線l的方程是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0.
(Ⅰ)當(dāng)a>2時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”.當(dāng)a=4時(shí),試問y=f(x)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com