【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓上.
(1)求圓的方程;
(2)若圓與直線交于,兩點,且,求的值.
【答案】(1);(2).
【解析】
分析:(1)因為曲線與坐標軸的交點都在圓上,所以要求圓的方程應求曲線與坐標軸的三個交點。曲線與軸的交點為,與軸的交點為 .由與軸的交點為 關于點(3,0)對稱,故可設圓的圓心為,由兩點間距離公式可得,解得.進而可求得圓的半徑為,然后可求圓的方程為.(2)設,,由可得,進而可得,減少變量個數。因為,,所以.要求值,故將直線與圓的方程聯立可得,消去,得方程。因為直線與圓有兩個交點,故判別式,由根與系數的關系可得,.代入,化簡可求得,滿足,故.
詳解:(1)曲線與軸的交點為,與軸的交點為
.故可設的圓心為,則有,解得.則圓的半徑為,所以圓的方程為.
(2)設,,其坐標滿足方程組
消去,得方程.
由已知可得,判別式,且,.
由于,可得.
又,
所以.
由得,滿足,故.
科目:高中數學 來源: 題型:
【題目】已知正項數列的前n項和為,且滿足,數列滿足,,且..
(1)求數列與的通項公式;
(2)求數列的前項的;
(3)將數列與的項相間排列構成新數列,設新數列的前項和為,若對任意正整數n都有,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線 ,直線 與 交于 , 兩點,且 ,其中 為坐標原點.
(1)求拋物線 的方程;
(2)已知點 的坐標為(-3,0),記直線 、 的斜率分別為 , ,證明: 為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海水受日月的引力,在一定的時候發(fā)生漲落的現象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時駛進航道,靠近碼頭;卸貨后,在落潮時返回海洋.下面是某港口在某季節(jié)每天時間與水深(單位:米)的關系表:
時刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請用一個函數來近似描述這個港口的水深y與時間t的函數關系;
(2)一般情況下,船舶航行時,船底離海底的距離為5米或5米以上認為是安全的(船舶?繒r,船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。
Ⅰ)如果該船是旅游船,1:00進港希望在同一天內安全出港,它至多能在港內停留多長時間(忽略進出港所需時間)?
Ⅱ)如果該船是貨船,在2:00開始卸貨,吃水深度以每小時0.5米的速度減少,由于臺風等天氣原因該船必須在10:00之前離開該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點時刻必須停止卸貨(忽略出港所需時間)?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【河南省新鄉(xiāng)市2017屆高三上學期第一次調研】設為坐標原點,已知橢圓的離心率為,拋物線的準線方程為.
(1)求橢圓和拋物線的方程;
(2)設過定點的直線與橢圓交于不同的兩點,若在以為直徑的圓的外部,求直
線的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】利民中學為了了解該校高一年級學生的數學成績,從高一年級期中考試成績中抽出100名學生的成績,由成績得到如下的頻率分布直方圖.
根據以上頻率分布直方圖,回答下列問題:
(1)求這100名學生成績的及格率;(大于等于60分為及格)
(2)試比較這100名學生的平均成績和中位數的大小.(精確到0.1)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com