精英家教網 > 高中數學 > 題目詳情

【題目】(多選)統(tǒng)計某校名學生的某次數學同步練習成績(滿分150分),根據成績依次分成六組:,,,,,,得到頻率分布直方圖如圖所示,若不低于140分的人數為110,則下列說法正確的是(

A.B.

C.100分以下的人數為60D.成績在區(qū)間內的人數占大半

【答案】AC

【解析】

A,通過頻率分布直方圖中各小長方形的面積和為1,計算得出的值;對B,通過不低于140分的人數和頻率,計算出總人數的值;對C,通過計算出的總人數100分以下的的頻率,計算出100分以下的人數;對D,計算成績在區(qū)間的頻率和,看頻率和是否大于0.5.

對選項A,由圖可知,,解得,故A說法正確;

對選項B,因為不低于140分的頻率為,所以,故B說法錯誤;

對選項C,因為100分以下的頻率為,所以100分以下的人數為,故C說法正確;

對選項D,成績在區(qū)間內的頻率為,人數占小半,故D說法錯誤.

故選:AC

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某商場為提高服務質量,隨機調查了50名男顧客和50名女顧客,每位顧客對該商場的服務給出滿意或不滿意的評價,得到下面列聯(lián)表:

滿意

不滿意

男顧客

40

10

女顧客

30

20

1)分別估計男、女顧客對該商場服務滿意的概率;

2)能否有的把握認為男、女顧客對該商場服務的評價有差異?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點,G是AE,DF的交點

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的偶函數f(x)和奇函數g(x)滿足.

(1)求函數f(x)g(x)的表達式;

(2)時,不等式恒成立,求實數a的取值范圍;

(3)若方程上恰有一個實根,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數R上的奇函數,m、n是常數.

1)求mn的值;

2)判斷的單調性并證明;

3)不等式對任意恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的參數方程為為參數),以直角坐標系的原點o為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程:

(Ⅱ)點P是曲線C上的動點,求點P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:若x2+y2>2,則|x|>1或|y|>1;命題q:直線mx-2y-m-2=0與圓x2+y2-3x+3y+2=0必有兩個不同交點,則下列說法正確的是( )

A. p為真命題 B. p∧(q)為真命題

C. (p)∨q為假命題 D. (p)∨(q)為假命題

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15.

1)完成下面的列聯(lián)表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;

平均車速超過的人數

平均車速不超過的人數

合計

男性駕駛員

女性駕駛員

合計

2)根據這些樣本數據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數為,假定抽取的結果相互獨立,求的分布列和數學期望.

參考公式:

臨界值表:

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求曲線在點處的切線方程;

(2)函數與函數的圖像總有兩個交點設這兩個交點的橫坐標分別為,.

(ⅰ)求的取值范圍;

(ⅱ)求證:.

查看答案和解析>>

同步練習冊答案