【題目】已知函數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn),設(shè)這兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,.
(。┣的取值范圍;
(ⅱ)求證:.
【答案】(1)(2)(。,(ⅱ)見(jiàn)解析
【解析】
(1)求出的導(dǎo)數(shù),求得切線的斜率,由得切點(diǎn)由點(diǎn)斜式方程可得切線的方程;
(2)(。函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn)轉(zhuǎn)化為函數(shù)有兩個(gè)零點(diǎn)的問(wèn)題,進(jìn)而研究的導(dǎo)數(shù)及圖像即可.
(ⅱ)先由 (。 得的單調(diào)性,分析出、不可能在同一單調(diào)區(qū)間內(nèi);設(shè),將導(dǎo)到上,利用函數(shù)在上單調(diào)性,欲證,只需證明,結(jié)合,只需證明.再構(gòu)造,結(jié)合單調(diào)性即可證明結(jié)論 .
(1)解:由已知得,
∴∴,又∵,
曲線在點(diǎn)處的切線方程為:.
(2)(。令 ,
∴,
由得,;由得,易知,為極大值點(diǎn),
又時(shí),當(dāng)時(shí),
即函數(shù)在時(shí)有負(fù)值存在,在時(shí)也有負(fù)值存在.
由題意,只需滿足,
∴的取值范圍是:
(ⅱ)由題意知,,為函數(shù) 的兩個(gè)零點(diǎn),由(ⅰ)知,不妨設(shè),則,且函數(shù)在上單調(diào)遞增,欲證,
只需證明,而,
所以,只需證明.
令,則
∴.
∵,∴,即
所以,,即在上為增函數(shù),
所以,,∴成立.
所以,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, , , 兩兩垂直, ,且, .
(1)求二面角的余弦值;
(2)已知點(diǎn)為線段上異于的點(diǎn),且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級(jí)“演講”和“詩(shī)詞”比賽,下面是他們的一段對(duì)話.甲說(shuō):“乙參加‘演講’比賽”;乙說(shuō):“丙參加‘詩(shī)詞’比賽”;丙說(shuō)“丁參加‘演講’比賽”;丁說(shuō):“戊參加‘詩(shī)詞’比賽”;戊說(shuō):“丁參加‘詩(shī)詞’比賽”.
已知這5個(gè)人中有2人參加“演講”比賽,有3人參加“詩(shī)詞”比賽,其中有2人說(shuō)的不正確,且參加“演講”的2人中只有1人說(shuō)的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是
A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】德國(guó)數(shù)學(xué)家科拉茨1937年提出一個(gè)著名的猜想:任給一個(gè)正整數(shù),如果是偶數(shù),就將它減半(即);如果是奇數(shù),則將它乘3加1(即),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1.對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定.現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)(首項(xiàng))按照上述規(guī)則進(jìn)行變換后的第9項(xiàng)為1(注:1可以多次出現(xiàn)),則的所有不同值的個(gè)數(shù)為( )
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中,,且前7項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】青少年“心理健康”問(wèn)題越來(lái)越引起社會(huì)關(guān)注,某校對(duì)高一600名學(xué)生進(jìn)行了一次“心理健康”知識(shí)測(cè)試,并從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖。
分組 | 頻數(shù) | 頻率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | ||
[90,100] | 14 | 0.28 |
合計(jì) | 1.00 |
(1)填寫(xiě)答題卡頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);
(2)請(qǐng)你估算學(xué)生成績(jī)的平均數(shù)及中位數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在中,,且.
(1)求角的大小;
(2)設(shè)數(shù)列滿足,前項(xiàng)和為,若,求的值.
【答案】(1);(2)或.
【解析】試題分析:
(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.
(2)結(jié)合(1)中的結(jié)論可得 .則 ,據(jù)此可得關(guān)于實(shí)數(shù)k的方程,解方程可得,則或.
試題解析:
(1)由已知,又,所以.又由,
所以,所以,
所以為直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【題型】解答題
【結(jié)束】
18
【題目】已知點(diǎn)是平行四邊形所在平面外一點(diǎn),如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張經(jīng)營(yíng)某一消費(fèi)品專賣(mài)店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷(xiāo)售量(百件)與銷(xiāo)售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當(dāng)銷(xiāo)售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤(rùn)為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問(wèn)銷(xiāo)售單價(jià)定為多少元時(shí),該專賣(mài)店可獲得最大月利潤(rùn)?(注:利潤(rùn)=收入-支出)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若的零點(diǎn)為2,求;
(2)若在上單調(diào)遞減,求的最小值;
(3)若對(duì)于任意的都有,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com