【題目】已知函數(shù)處取極大值,在處取極小值.

(1)若,求函數(shù)的單調(diào)區(qū)間和零點個數(shù);

(2)在方程的解中,較大的一個記為;在方程的解中,較小的一個記為,證明:為定值;

(3)證明:當(dāng)時,.

【答案】(1)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;3個零點(2)-1(3)見解析

【解析】分析:(1)當(dāng),求導(dǎo)即可得到單調(diào)區(qū)間,再利用零點存在定理判定零點即可;

(2)因為,可知. 因為,即,可知,同理,得到,即可證明;

(3)要證,即要證.

設(shè),求導(dǎo),通過單調(diào)性可知,再設(shè),求導(dǎo),通過單調(diào)性可知,

因為,所以,,且分別在和2.處取最大值和最小值,因此恒成立,即當(dāng)時,.

解析:解(1)當(dāng)時,,;

當(dāng)時,;當(dāng)時,;

即函數(shù)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;

,,,所以有3個零點.

(2)因為,則

可知.

因為,即

.

可知,

同理,由可知

;

得到;

.

(3)要證,即要證.

設(shè),則;當(dāng)時,;當(dāng)時,;

可知;

再設(shè),則;當(dāng)時,;當(dāng)時,

可知,.

因為,所以,且分別在和2處取最大值和最小值,因此恒成立,即當(dāng)時,.

(3)另證:一方面,易證;(略)

另一方面,當(dāng) 時,;

;

所以,,

且不存在正數(shù),使得其中等號同時成立,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)是奇函數(shù).

1)求實數(shù)ab的值;

2)若對任意實數(shù)x,不等式f4xk2x+f22x+1k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某自來水廠的蓄水池有噸水,水廠每小時可向蓄水池中注水噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內(nèi)供水總量為噸,其中

)從供水開始到第幾小時,蓄水池中的存水量最少? 最少水量是多少噸?

)若蓄水池中水量少于噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的小時內(nèi),大約有幾小時出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為備戰(zhàn)2016年奧運會,甲、乙兩位射擊選手進(jìn)行了強化訓(xùn)練.現(xiàn)分別從他們的強化訓(xùn)練期間的若干次平均成績中隨機抽取8次,記錄如下:

甲:83,90,79,78,94,89,84,83

乙:92,95,80,75,82,81,90,85

(1)畫出甲、乙兩位選手成績的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運會封閉集訓(xùn),從統(tǒng)計學(xué)角度,你認(rèn)為派哪位選手參加合理?簡單說明理由;

(3)若將頻率視為概率,對選手乙在今后的三次比賽成績進(jìn)行預(yù)測,記這三次成績中不低于85分的次數(shù)為ξ,求ξ的分布列及均值E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,焦距為 2,一條準(zhǔn)線方程為,為橢圓上一點,直線交橢圓于另一點.

(1)求橢圓的方程;

(2)若點的坐標(biāo)為,求過三點的圓的方程;

(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題:關(guān)于的不等式的解集為,命題:函數(shù)為增函數(shù),分別求出符合下列條件的實數(shù)的取值范圍.

(1)為真命題;

(2)“”為真,“”為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,直線過點

1)若直線的斜率為,證明:與圓相切;

2)若直線與圓交于兩點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若關(guān)于的不等式的解集為,求實數(shù)的值;

2)若對任意的,,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.

)證明: BC1//平面A1CD;

)設(shè)AA1= AC=CB=2AB=2,求三棱錐CA1DE的體積.

查看答案和解析>>

同步練習(xí)冊答案