精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,過點作傾斜角為的直線,以原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,將曲線上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到曲線,直線與曲線交于不同的兩點.

1)求直線的參數方程和曲線的普通方程;

2)求的值.

【答案】1)直線的參數方程為,曲線的普通方程為;(2

【解析】

1)根據直線參數方程的知識求得直線的參數方程,將的極坐標方程轉化為直角坐標方程,然后通過圖像變換的知識求得的普通方程.

2)將直線的參數方程代入曲線的普通方程,化簡后寫出韋達定理,根據直線參數的幾何意義,求得的值.

直線的參數方程為,

兩邊平方得,所以曲線的直角坐標方程式,

曲線的方程為,.

(2)直線的參數方程為,代入曲線的方程得:

對應得參數分別為,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強軍成就.裝備方陣堪稱“強軍利刃”“強國之盾”,見證著人民軍隊邁向世界一流軍隊的堅定步伐.此次大閱兵不僅得到了全中國人的關注,還得到了無數外國人的關注.某單位有6位外國人,其中關注此次大閱兵的有5位,若從這6位外國人中任意選取2位做一次采訪,則被采訪者都關注了此次大閱兵的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)討論fx)的單調性;

2)設a4,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】血藥濃度(Serum Drug Concentration)是指藥物吸收后在血漿內的總濃度(單位:mg/ml),通常用血藥濃度來研究藥物的作用強度.下圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點的橫坐標表示服用第種藥后血藥濃度達到峰值時所用的時間,其它點的橫坐標分別表示服用三種新藥后血藥濃度第二次達到峰值一半時所用的時間(單位:h),點的縱坐標表示第種藥的血藥濃度的峰值.(

①記為服用第種藥后達到血藥濃度峰值時,血藥濃度提高的平均速度,則中最大的是_______;

②記為服用第種藥后血藥濃度從峰值降到峰值的一半所用的時間,則中最大的是_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為為其左、右頂點,為橢圓上除外任意一點,若記直線的斜率分別為

1)求證:為定值;

2)若橢圓的長軸長為,過點作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點,設與橢圓相交的弦的中點,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,(其中常數).

(1)當時,求函數的極值;

(2)若函數有兩個零點,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是橢圓的左、右焦點,離心率為,是平面內兩點,滿足,線段的中點在橢圓上,周長為12.

1)求橢圓的方程;

2)若與圓相切的直線與橢圓交于,求(其中為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】勒洛三角形是具有類似圓的定寬性的曲線,它是由德國機械工程專家、機構運動學家勒洛首先發(fā)現,其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.如圖中的兩個勒洛三角形,它們所對應的等邊三角形的邊長比為,若從大的勒洛三角形中隨機取一點,則此點取自小勒洛三角形內的概率為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】02中選一個數字,從1,3,5中選兩個數字,組成無重復數字的三位數,則該三位數為奇數的概率為______.

查看答案和解析>>

同步練習冊答案