【題目】已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)是二次函數(shù),如圖是f′(x)的大致圖象,若f(x)的極大值與極小值的和等于 ,則f(0)的值為( )

A.0
B.
C.
D.

【答案】C
【解析】解:如圖示:
,
∵其導(dǎo)函數(shù)的函數(shù)值應(yīng)在(﹣∞,﹣2)上為正數(shù),在(﹣2,2)上為負(fù)數(shù),在(2,+∞)上為正數(shù),
由導(dǎo)函數(shù)圖象可知,函數(shù)在(﹣∞,﹣2)上為增函數(shù),在(﹣2,2)上為減函數(shù),在(2,+∞)上為增函數(shù),
∴函數(shù)在x=﹣2取得極大值,在x=2取得極小值,且這兩個(gè)極值點(diǎn)關(guān)于(0,f(0))對(duì)稱,
由f(x)的極大值與極小值之和為 ,得
f(﹣2)+f(2)=2f(0),
=2f(0),
則f(0)的值為 ,
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解基本求導(dǎo)法則(若兩個(gè)函數(shù)可導(dǎo),則它們和、差、積、商必可導(dǎo);若兩個(gè)函數(shù)均不可導(dǎo),則它們的和、差、積、商不一定不可導(dǎo)),還要掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 =(2,1), =(1,7), =(5,1),設(shè)Z是直線OP上的一動(dòng)點(diǎn).

(1)求使 取最小值時(shí)的 ;
(2)對(duì)(1)中求出的點(diǎn)Z,求cos∠AZB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線E:x2=2py(p>0),直線y=kx+2與E交于A、B兩點(diǎn),且 =2,其中O為原點(diǎn).
(1)求拋物線E的方程;
(2)點(diǎn)C坐標(biāo)為(0,﹣2),記直線CA、CB的斜率分別為k1 , k2 , 證明:k12+k22﹣2k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosA+a=2b
(1)求角C的值;
(2)若c=2,且△ABC的面積為 ,求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB= .D,E分別為線段AB,BC上的點(diǎn),且CD=DE= ,CE=2EB=2

(1)證明:DE⊥平面PCD
(2)求二面角B﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a=﹣2 sin(x+ )dx,求二項(xiàng)式(x2+ 5的展開(kāi)式中x的系數(shù)及展開(kāi)式中各項(xiàng)系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,B是鈍角,且 a=2bsinA.
(1)求B的大。
(2)若△ABC的面積為 ,且b=7,求a+c的值;
(3)若b=6,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2000多年前,古希臘大數(shù)學(xué)家阿波羅尼奧斯((Apollonius)發(fā)現(xiàn):平面截圓錐的截口曲線是圓錐曲線.已知圓錐的高為, 為地面直徑,頂角為,那么不過(guò)頂點(diǎn)的平面;與夾角時(shí),截口曲線為橢圓;與夾角時(shí),截口曲線為拋物線;與夾角時(shí),截口曲線為雙曲線.如圖,底面內(nèi)的直線,過(guò)的平面截圓錐得到的曲線為橢圓,其中與的交點(diǎn)為,可知為長(zhǎng)軸.那么當(dāng)在線段上運(yùn)動(dòng)時(shí),截口曲線的短軸頂點(diǎn)的軌跡為( )

A. 圓的部分 B. 橢圓的部分 C. 雙曲線的部分 D. 拋物線的部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )﹣ cos(2x+ ).
(1)數(shù)的單調(diào)增區(qū)間;
(2)若f(α)= ,α∈(0, ),求cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案