【題目】如圖所示,已知AB為圓O的直徑,且,點D為線段AO的中點,點C為圓O上的一點,且平面ABC,.

1)求證:平面PAB.

2)求二面角的余弦值.

【答案】1)證明見解析;(2

【解析】

1)連接,可證,再由線面垂直得到,從而得證;

2)以為坐標原點,,分別為軸,軸,軸建立空間直角坐標系利用空間向量法求出二面角的余弦值.

1)證明:連接,因為為圓的直徑,

,且,又因為,

, 為等邊三角形.

的中點,.

因為平面ABC,又平面ABC,,

平面PAB,平面PAB,且

所以平面PAB

2)由(1)知,互相垂直,以為坐標原點,

,,分別為軸,軸,軸建立如圖坐標系,

,,,

,設為平面PAC的法向量,則,即,令,解得

又因為平面

平面的法向量可取,

二面角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】依照某發(fā)展中國家2018年的官方資料,將該國所有家庭按年收入從低到高的順序平均分為五組,依次為第一組至第五組,各組家庭的年收入總和占該國全部家庭的年收入總和的百分比如圖所示.

以下關于該國2018年家庭收入的判斷,一定正確的是( )

A. 至少有的家庭的年收入都低于全部家庭的平均年收入

B. 收入最低的那的家庭平均年收入為全部家庭平均年收入的

C. 收入最高的那的家庭年收入總和超過全部家庭年收入總和的

D. 收入最低的那的家庭年收入總和超過全部家庭年收入總和的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是各項均為正數(shù)的等差數(shù)列,其中,且成等比數(shù)列;數(shù)列的前項和為,滿足.

1)求數(shù)列的通項公式;

2)如果,設數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出的最小值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若,,求實數(shù)的值.

2)若,,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的極值點.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求證:函數(shù)存在唯一的極小值點,且.

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間有5名工人其中初級工2人,中級工2人,高級工1現(xiàn)從這5名工人中隨機抽取2名.

求被抽取的2名工人都是初級工的概率;

求被抽取的2名工人中沒有中級工的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線),焦點為,直線交拋物線兩點,的中點,且

(1)求拋物線的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),當時,.則下列結論正確的是( ).

A.時,

B.函數(shù)有五個零點

C.若關于的方程有解,則實數(shù)的取值范圍是

D.恒成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)為了解居民參加體育鍛煉情況,隨機抽取18名男性居民,12名女性居民對他們參加體育鍛煉的情況進行問卷調(diào)查.現(xiàn)按參加體育鍛煉的情況將居民分成3類:甲類(不參加體育鍛煉),乙類(參加體育鍛煉,但平均每周參加體育鍛煉的時間不超過5個小時),丙類(參加體育鍛煉,且平均每周參加體育鍛煉的時間超過5個小時),調(diào)查結果如下表:

(1)根據(jù)表中的統(tǒng)計數(shù)據(jù),完成下面列聯(lián)表,并判斷是否有的把握認為參加體育鍛煉與性別有關?

(2)從抽出的女性居民中再隨機抽取3人進一步了解情況,記為抽取的這3名女性居民中甲類和丙類人數(shù)差的絕對值,求的數(shù)學期望.

附:

查看答案和解析>>

同步練習冊答案