(2011•山東)已知雙曲線
和橢圓
有相同的焦點,且雙曲線的離心率是橢圓離心率的兩倍,則雙曲線的方程為
_________ .
=1
由題得,雙曲線
的焦點坐標為(
,0),(﹣
,0),c=
:
且雙曲線的離心率為2×
=
=
⇒a=2.⇒b
2=c
2﹣a
2=3,
雙曲線的方程為
=1.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,橢圓
的方程為
,雙曲線
的方程為
,
與
的離心率之積為
,則
的漸近線方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若拋物線
的焦點與橢圓
的左焦點重合,則
的值為( )
A.-8 | B.-16 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F
1、F
2分別為雙曲線C:
的左、右焦點,A為雙曲線的左頂點,以F
1F
2為直徑的圓交雙曲線的某條漸近線于M、N兩點,且滿足
MAN=120
o,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知直線
與橢圓
相交于
兩點,點
是線段
上的一點,
且點
在直線
上.
(1)求橢圓的離心率;
(2)若橢圓的焦點關于直線
的對稱點在單位圓
上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓
的方程;
(2)若過點
(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(
為坐標原點),當
<
時,求實數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知焦點在
軸的橢圓
的左、右焦點分別為
,直線
過右焦點
,和橢圓交于
兩點,且滿足
,
,則橢圓
的標準方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系xOy中,橢圓
的離心率為
,過橢圓右焦點
作兩條互相垂直的弦
與
.當直線
斜率為0時,
.
(1)求橢圓的方程;
(2)求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在平面直角坐標系
中,橢圓
的中心為原點,焦點
在
軸上,離心率為
。過
的直線L交C于
兩點,且
的周長為16,那么
的方程為
。
查看答案和解析>>