【題目】已知,.
(1)若,判斷函數(shù)在的單調(diào)性;
(2)證明: ,;
(3)設(shè) ,對(duì),,有恒成立,求的最小值.
【答案】(1)在單調(diào)遞增(2)見(jiàn)解析(3)2
【解析】
(1)計(jì)算導(dǎo)函數(shù),結(jié)合導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,即可.(2)利用,得到 ,采用裂項(xiàng)相消法,求和,即可.(3)計(jì)算導(dǎo)函數(shù),構(gòu)造新函數(shù),判斷最小值,構(gòu)造函數(shù),計(jì)算范圍,得到k的最小值,即可。
解:(1).
又,因此,而,
所以,故在單調(diào)遞增.
(2)由(1)可知時(shí),,
即,
設(shè),則
因此
即
.
即結(jié)論成立.
(3)由題意知,
,
設(shè),
則,
由于,故,
時(shí),單調(diào)遞增,又,,
因此在存在唯一零點(diǎn),使,即,
且當(dāng),,,單調(diào)遞減;
,,,單調(diào)遞增;
故 ,
故
,
設(shè)
,又設(shè)
故在上單調(diào)遞增,因此,
即,在單調(diào)遞增,
,
又,
所以,
故所求的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)證明:當(dāng)a=3時(shí),函數(shù)有且只有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)求不等式|x-1|+|x+2|≥5的解集;
(2)若關(guān)于x的不等式|ax-2|<3的解集為,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn).
(1)求曲線的長(zhǎng)度;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情期間,有一批貨物需要用汽車(chē)從城市甲運(yùn)至城市乙,已知從城市甲到城市乙只有兩條公路,且通過(guò)這兩條公路所用的時(shí)間互不影響.據(jù)調(diào)查統(tǒng)計(jì),通過(guò)這兩條公路從城市甲到城市乙的200輛汽車(chē)所用時(shí)間的頻數(shù)分布如下表:
所用時(shí)間 | 10 | 11 | 12 | 13 |
通過(guò)公路1的頻數(shù) | 20 | 40 | 20 | 20 |
通過(guò)公路2的頻數(shù) | 10 | 40 | 40 | 10 |
(1)為進(jìn)行某項(xiàng)研究,從所用時(shí)間為12的60輛汽車(chē)中隨機(jī)抽取6輛,若用分層隨機(jī)抽樣的方法抽取,求從通過(guò)公路1和公路2的汽車(chē)中各抽取幾輛:
(2)若從(1)的條件下抽取的6輛汽車(chē)中,再任意抽取2輛汽車(chē),求這2輛汽車(chē)至少有1輛通過(guò)公路1的概率;
(3)假設(shè)汽車(chē)A只能在約定時(shí)間的前11h出發(fā),汽車(chē)B只能在約定時(shí)間的前12h出發(fā).為了盡最大可能在各自允許的時(shí)間內(nèi)將貨物從城市甲運(yùn)到城市乙,汽車(chē)A和汽車(chē)B應(yīng)如何選擇各自的道路?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.
(1)求證:;
(2)求證:平面平面;
(3)線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(文)(2017·衡水二模)某商場(chǎng)在元旦舉行購(gòu)物抽獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定顧客從裝有編號(hào)0,1,2,3,4的五個(gè)相同小球的抽獎(jiǎng)箱中一次任意摸出兩個(gè)小球,若取出的兩個(gè)小球的編號(hào)之和等于7則中一等獎(jiǎng),等于6或5則中二等獎(jiǎng),等于4則中三等獎(jiǎng),其余結(jié)果為不中獎(jiǎng).
(1)求中二等獎(jiǎng)的概率.
(2)求不中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,斜邊,為直角邊上的一點(diǎn),將沿直線折疊至的位置,使得點(diǎn)在平面外,且點(diǎn)在平面上的射影在線段上設(shè),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com