設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),
(1)設(shè)橢圓C上的點(diǎn)(
3
,
3
2
)到F1,F(xiàn)2兩點(diǎn)距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.
分析:(1)根據(jù)橢圓C上的點(diǎn)(
3
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于4,可知2a=4,求得a.把點(diǎn)(
3
,
3
2
)
和a代入橢圓的標(biāo)準(zhǔn)方程,可求得b.進(jìn)而可得橢圓的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo).
(2)設(shè)KF1的中點(diǎn)為B(x,y)則點(diǎn)K(2x+1,2y),把K的坐標(biāo)代入橢圓的標(biāo)準(zhǔn)方程,可得到x和y的關(guān)系式即點(diǎn)B的軌跡方程
(3)設(shè)M(x0,y0),N(-x0,-y0),p(x,y) 把這些點(diǎn)代入橢圓的標(biāo)準(zhǔn)方程,得到
x02
a2
+
y02
b2
=1,
x2
a2
+
y2
b2
=1
后兩式相減可得到
y2-y02
x2-x02
的值,然后表示出kPM,KPN后相乘并將
y2-y02
x2-x02
的值代入可得到結(jié)論.
解答:解:(1)由于點(diǎn)(
3
,
3
2
)
在橢圓上,
(
3
)
2
a2
+
(
3
2
)
2
b2
=1

2a=4,
橢圓C的方程為
x2
4
+
y2
3
=1

焦點(diǎn)坐標(biāo)分別為(-1,0),(1,0)
(2)設(shè)KF1的中點(diǎn)為B(x,y)則點(diǎn)K(2x+1,2y)
把K的坐標(biāo)代入橢圓
x2
4
+
y2
3
=1
中得
(2x+1)2
4
+
(2y)2
3
=1

線段KF1的中點(diǎn)B的軌跡方程為(x+
1
2
)2+
y2
3
4
=1

(3)過(guò)原點(diǎn)的直線L與橢圓相交的兩點(diǎn)M,N關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)
設(shè)M(x0,y0)N(-x0,-y0),p(x,y)
M,N,P在橢圓上,應(yīng)滿(mǎn)足橢圓方程,
x02
a2
+
y02
b2
=1,
x2
a2
+
y2
b2
=1

kPM=
y-y0
x-x0
KPN=
y+y0
x+x0

kPM•KPN=
y-y0
x-x0
y+y0
x+x0
=
y2-y02
x2-x02
=-
b2
a2

kPM•KPN的值與點(diǎn)P及直線L無(wú)關(guān)
點(diǎn)評(píng):本題主要考查橢圓的標(biāo)準(zhǔn)方程和直線與橢圓的綜合問(wèn)題.橢圓在圓錐曲線中所占比重最大,考查的也最多,要強(qiáng)化復(fù)習(xí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)F1,F(xiàn)2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦點(diǎn).
(1)當(dāng)P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8時(shí),求橢圓C的左,右焦點(diǎn)F1、F2
(2)F1、F2是(1)中的橢圓的左,右焦點(diǎn),已知⊙F2的半徑是1,過(guò)動(dòng)點(diǎn)Q的作⊙F2切線QM,使得|QF1|=
2
|QM|
(M是切點(diǎn)),如圖.求動(dòng)點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),且橢圓上一點(diǎn)P(1,
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于4.
(Ⅰ)求此橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N,且線段MN的垂直平分線過(guò)定點(diǎn)G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)F1、F2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦點(diǎn).
(I)當(dāng)p∈C,且
pF1
pF
2
=0
,|
pF1
|•|
pF
2
|=4
時(shí),求橢圓C的左、右焦點(diǎn)F1、F2的坐標(biāo).
(II)F1、F2是(I)中的橢圓的左、右焦點(diǎn),已知F2的半徑是1,過(guò)動(dòng)點(diǎn)Q作的切線QM(M為切點(diǎn)),使得|QF1|=
2
|QM|
,求動(dòng)點(diǎn)Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
x2
b2
=1(a>b>0)的焦點(diǎn),若橢圓C上存在點(diǎn)P,使線段PF1的垂直平分線過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶二模)設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點(diǎn).
(1)設(shè)橢圓C上的點(diǎn)(
2
2
,
3
2
)
到F1,F(xiàn)2兩點(diǎn)距離之和等于2
2
,寫(xiě)出橢圓C的方程;
(2)設(shè)過(guò)(1)中所得橢圓上的焦點(diǎn)F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設(shè)點(diǎn)P是橢圓C 上的任意一點(diǎn),過(guò)原點(diǎn)的直線l與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點(diǎn)P及直線l有關(guān),并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案