求以橢圓的焦點為焦點,且過點的雙曲線的標準方程.

解析試題分析:首先設(shè)出雙曲線的標準方程,然后利用與橢圓的關(guān)系、雙曲線過點建立組可求得a,b的值.
試題解析:由橢圓的標準方程可知,橢圓的焦點在軸上.
設(shè)雙曲線的標準方程為
根據(jù)題意, 解得(不合題意舍去),
∴雙曲線的標準方程為
考點:1、橢圓的幾何性質(zhì);2、雙曲線的方程求法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點. 過它的兩個焦點分別作直線,交橢圓于A、B兩點,交橢圓于C、D兩點,且

(1)求橢圓的標準方程;
(2)求四邊形的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設(shè)直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點,點在直線上運動,過點垂直的直線和線段的垂直平分線相交于點
(1)求動點的軌跡的方程;
(2)過(1)中的軌跡上的定點作兩條直線分別與軌跡相交于,兩點.試探究:當直線,的斜率存在且傾斜角互補時,直線的斜率是否為定值?若是,求出這個定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓,直線交橢圓兩點.
(Ⅰ)求橢圓的焦點坐標及長軸長;
(Ⅱ)求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知橢圓的兩個焦點分別為、,且到直線的距離等于橢圓的短軸長.

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過、,是橢圓上的動點且在圓外,過作圓的切線,切點為,當的最大值為時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點,直線AG,BG相交于點G,且它們的斜率之積是
(Ⅰ)求點G的軌跡的方程;
(Ⅱ)圓上有一個動點P,且P在x軸的上方,點,直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,若,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知離心率的橢圓一個焦點為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓兩點,且,求直線方程.

查看答案和解析>>

同步練習冊答案