【題目】某校將5名插班生甲、乙、丙、丁、戊編入3個(gè)班級(jí),每班至少1人,則不同的安排方案共有( )
A.150種B.120種C.240種D.540種
【答案】A
【解析】
根據(jù)題意,分2步先將5名插班生分為3組,有2種分組方法,①分為3、1、1的三組,②分為2、2、1的三組,由組合數(shù)公式可得其分組方法數(shù)目,由分類計(jì)數(shù)原理將其相加可得分組的情況數(shù)目,第二步,將分好的三組對(duì)應(yīng)3個(gè)不同的班級(jí),由排列數(shù)公式可得其對(duì)應(yīng)方法數(shù)目,由分步計(jì)數(shù)原理計(jì)算可得選項(xiàng).
由題意可知,可分以下兩種情況討論,①5名插班生分成:, ,1三組;②5名插班生分成:,,三組,
當(dāng)5名插班生分成:, ,1三組時(shí),共有種方案;
當(dāng)5名插班生分成:,,三組時(shí),共有種方案;
所以,共有種不同的安排方案.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),當(dāng)時(shí),曲線上對(duì)應(yīng)的點(diǎn)為.以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(I)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(II)設(shè)曲線與的公共點(diǎn)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長(zhǎng)棱的長(zhǎng)度為( )
A. B. C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有10名乒乓球選手進(jìn)行單循環(huán)賽.比賽結(jié)果顯示,沒有和局,且任意5人中既有1人勝其余4人,又有1人負(fù)其余4人.則恰好勝了兩場(chǎng)的選手有______名.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,點(diǎn)為的焦點(diǎn),過的直線交于,兩點(diǎn).
(1)設(shè),在的準(zhǔn)線上的射影分別為,,線段的中點(diǎn)為,證明:.
(2)在軸上是否存在一點(diǎn),使得直線,的斜率之和為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線與拋物線交于,兩點(diǎn),且.
(1)求的方程;
(2)試問:在軸的正半軸上是否存在一點(diǎn),使得的外心在上?若存在,求的坐標(biāo);若不存在,請(qǐng)說明理由..
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市舉辦數(shù)學(xué)知識(shí)競(jìng)賽活動(dòng),共5000名學(xué)生參加,競(jìng)賽分為初試和復(fù)試,復(fù)試環(huán)節(jié)共3道題,其中2道單選題,1道多選題,得分規(guī)則如下:參賽學(xué)生每答對(duì)一道單選題得2分,答錯(cuò)得O分,答對(duì)多選題得3分,答錯(cuò)得0分,答完3道題后的得分之和為參賽學(xué)生的復(fù)試成績(jī).
(1)通過分析可以認(rèn)為學(xué)生初試成績(jī)服從正態(tài)分布,其中,,試估計(jì)初試成績(jī)不低于90分的人數(shù);
(2)已知小強(qiáng)已通過初試,他在復(fù)試中單選題的正答率為,多選題的正答率為,且每道題回答正確與否互不影響.記小強(qiáng)復(fù)試成績(jī)?yōu)?/span>,求的分布列及數(shù)學(xué)期望.
附:,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當(dāng)直線l被圓C截得的弦長(zhǎng)為時(shí),求
(Ⅰ)a的值;
(Ⅱ)求過點(diǎn)(3,5)并與圓C相切的切線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com