【題目】已知O點為△ABC所在平面內(nèi)一點,且滿足 +2 +3 = ,現(xiàn)將一粒質(zhì)點隨機撒在△ABC內(nèi),若質(zhì)點落在△AOC的概率為( )
A.
B.
C.
D.

【答案】B
【解析】解:以O(shè)B、OC為鄰邊作平行四邊形OBDC,則
+2 +3 = ,∴3 ,作AB的兩個三等分點E,F(xiàn),則 ,
∴O到AC的距離是E到AC距離的一半,B到AC的距離是O到AC距離的3倍,如圖
∴SAOC= SABC
將一粒黃豆隨機撒在△ABC內(nèi),黃豆落在△AOC內(nèi)的概率為P= ;
故選:B.

【考點精析】掌握幾何概型是解答本題的根本,需要知道幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率 ,左右焦點分別為 是橢圓在第一象限上的一個動點,圓 的延長線, 的延長線以及線段 都相切, 為一個切點.

(1)求橢圓方程;

(2)設(shè) ,過 且不垂直于坐標軸的動點直線 交橢圓于 兩點,若以 為鄰邊的平行四邊形是菱形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+alnx.
(1)當a=1時,求曲線f(x)在點(1,f(1))處的切線方程;
(2)當a=﹣2時,求函數(shù)f(x)的極值;
(3)若函數(shù)g(x)=f(x)+ 在[1,4]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】右面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損.則甲的平均成績超過乙的平均成績的概率為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設(shè)

(1)判斷函數(shù)零點的個數(shù),并給出證明;

(2)首項為的數(shù)列滿足:①;②.其中.求證:對于任意的,均有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】專家研究表明,2.5是霾的主要成份,在研究2.5形成原因時,某研究人員研究了2.5與燃燒排放的、、等物質(zhì)的相關(guān)關(guān)系.下圖是某地某月2.5與相關(guān)性的散點圖.

(Ⅰ)根據(jù)上面散點圖,請你就,2.5的影響關(guān)系做出初步評價;

(Ⅱ)根據(jù)有關(guān)規(guī)定,當排放量低于排放量達標,反之為排放量超標;當2.5值大于時霧霾嚴重,反之霧霾不嚴重.根據(jù)2.5與相關(guān)性的散點圖填寫好下面列聯(lián)表,并判斷有多大的把握認為“霧霾是否嚴重與排放量有關(guān)”:

霧霾不嚴重

霧霾嚴重

總計

排放量達標

排放量超標

總計

(Ⅲ)我們知道霧霾對交通影響較大.某市交通部門發(fā)現(xiàn),在一個月內(nèi),當排放量分別是60,120,180時,某路口的交通流量(單位:萬輛)一次是800,600,200,而在一個月內(nèi),排放量是60,120,180的概率一次是,,),求該路口一個月的交通流量期望值的取值范圍.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是(
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:參數(shù)方程與極坐標系

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù), 為傾斜角),以坐標原點O為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為

1)求曲線的直角坐標方程,并 C的焦點F的直角坐標;

2)已知點,若直線C相交于A,B兩點,且,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列函數(shù)的定義域和值域:
(1)y=3
(2)y=
(3)y=log2

查看答案和解析>>

同步練習冊答案