【題目】已知函數(shù)f(x)=x2+alnx.
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a=﹣2時(shí),求函數(shù)f(x)的極值;
(3)若函數(shù)g(x)=f(x)+ 在[1,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

【答案】
(1)解: a=1時(shí),f(x)=x2+lnx,f′(x)=2x+ ,

故f(1)=1,f′(1)=3,

故切線方程是:y﹣1=3(x﹣1),

即3x﹣y﹣2=0;


(2)解:函數(shù)f(x)的定義域?yàn)椋?,+∞)

當(dāng)a=﹣2時(shí),f′(x)=2x﹣ = ,

令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,

故函數(shù)f(x)單調(diào)遞減區(qū)間是(0,1),單調(diào)遞增區(qū)間是(1,+∞)

∴極小值是f(1)=1,沒有極大值;


(3)解:由g(x)=x2+alnx+ ,得g′(x)=2x+ ,

又函數(shù)g(x)=x2+alnx+ 為[1,4]上的單調(diào)減函數(shù),

則g'(x)≤0在[1,4]上恒成立,

所以不等式2x+ ≤0在[1,4]上恒成立,

即a≤ ﹣2x2在[1,4]上恒成立,

設(shè)φ(x)= ﹣2x2,顯然(x)在[1,4]上為減函數(shù),

所以(x)的最小值為(4)=﹣ ,

∴a的取值范圍是a≤﹣


【解析】(1)求出f(1),f′(1),代入切線方程即可;(2)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;(3)由g(x)=x2+alnx+ ,得g′(x),由g'(x)≤0在[1,4]上恒成立,可得a≤ ﹣2x2在[1,4]上恒成立.構(gòu)造函數(shù)φ(x)= ﹣2x2 , 求其最小值即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家“十三五”計(jì)劃,提出創(chuàng)新興國(guó),實(shí)現(xiàn)中國(guó)創(chuàng)新,某市教育局為了提高學(xué)生的創(chuàng)新能力,把行動(dòng)落到實(shí)處,舉辦一次物理、化學(xué)綜合創(chuàng)新技能大賽,某校對(duì)其甲、乙、丙、丁四位學(xué)生的物理成績(jī)(x)和化學(xué)成績(jī)(y)進(jìn)行回歸分析,求得回歸直線方程為y=1.5x﹣35.由于某種原因,成績(jī)表(如表所示)中缺失了乙的物理和化學(xué)成績(jī).

物理成績(jī)(x)

75

m

80

85

化學(xué)成績(jī)(y)

80

n

85

95

綜合素質(zhì)
(x+y)

155

160

165

180


(1)請(qǐng)?jiān)O(shè)法還原乙的物理成績(jī)m和化學(xué)成績(jī)n;
(2)在全市物理化學(xué)科技創(chuàng)新比賽中,由甲、乙、丙、丁四位學(xué)生組成學(xué)校代表隊(duì)參賽.共舉行3場(chǎng)比賽,每場(chǎng)比賽均由賽事主辦方從學(xué)校代表中隨機(jī)抽兩人參賽,每場(chǎng)比賽所抽的選手中,只要有一名選手的綜合素質(zhì)分高于160分,就能為所在學(xué)校贏得一枚榮譽(yù)獎(jiǎng)?wù)拢粲洷荣愔汹A得榮譽(yù)獎(jiǎng)?wù)碌拿稊?shù)為ξ,試根據(jù)上表所提供數(shù)據(jù),預(yù)測(cè)該校所獲獎(jiǎng)?wù)聰?shù)ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cosxsin(x+ )﹣a,且x=﹣ 是方程f(x)=0的一個(gè)解.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(3)若關(guān)于x的方程f(x)=b在區(qū)間(0, )上恰有三個(gè)不相等的實(shí)數(shù)根x1 , x2 , x3 , 直接寫出實(shí)數(shù)b的取值范圍及x1+x2+x3的取值范圍(不需要給出解題過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(log2x﹣2)(log4x﹣
(1)當(dāng)x∈[2,4]時(shí),求該函數(shù)的值域;
(2)若f(x)>mlog2x對(duì)于x∈[4,16]恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中有大小、質(zhì)地相同的紅球、黑球各一個(gè),現(xiàn)有放回地隨機(jī)摸取3次,每次摸取一個(gè)球,若摸出紅球,得10分,摸出黑球,得5分,則3次摸球所得總分至少是25分的概率是___

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2bx,g(x)=|x﹣1|,若對(duì)任意x1 , x2∈[0,2],當(dāng)x1<x2時(shí)都有f(x1)﹣f(x2)<g(x1)﹣g(x2),則實(shí)數(shù)b的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O點(diǎn)為△ABC所在平面內(nèi)一點(diǎn),且滿足 +2 +3 = ,現(xiàn)將一粒質(zhì)點(diǎn)隨機(jī)撒在△ABC內(nèi),若質(zhì)點(diǎn)落在△AOC的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x﹣t(t為常數(shù))有兩個(gè)零點(diǎn),g(x)=
(1)求g(x)的值域(用t表示);
(2)當(dāng)t變化時(shí),平行于x軸的一條直線與y=|f(x)|的圖象恰有三個(gè)交點(diǎn),該直線與y=g(x)的圖象的交點(diǎn)橫坐標(biāo)的取值集合為M,求M.

查看答案和解析>>

同步練習(xí)冊(cè)答案