【題目】如圖,已知是圓的直徑,,在圓上且分別在的兩側(cè),其中.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

【答案】D

【解析】

依次判斷每個選項的正誤:,所以A正確;當,A,C各在所在圓弧的中點,計算體積得到B正確;反證法證明ABCD不垂直C正確;根據(jù)C選項知D錯誤,得到答案。

因為,所以A正確;

,A,C各在所在圓弧的中點,此時三棱錐的底面BCD的面積和高均處于最大位置,此時體積為,所以B正確;

ABCD顯然異面,用反證法證明他們不垂直.若,過ABD的垂線,垂足為E,因為為直二面角,所以AE⊥平面BCD,所以,所以,所以,這與矛盾,所以ABCD不垂直,所以C正確;

假設存在一個位置,使得平面平面,過,則平面由于平面,與選項矛盾.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)滿足,且對任意的都有其中的導數(shù),則下列一定判斷正確的是( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,,底面.

1)當為何值時,平面?證明你的結(jié)論;

2)若在邊上至少存在一點,使,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于函數(shù)|cosx|+cos|2x|有下列四個結(jié)論:①是偶函數(shù);②π的最小正周期;③[π,π]上單調(diào)遞增;④的值域為[2,2].上述結(jié)論中,正確的個數(shù)為(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+)=1

1)求直線l的直角坐標方程和曲線C的普通方程;

2)已知點M 20),若直線l與曲線C相交于P、Q兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:

函數(shù)的最大值為1;

,的否定是

為銳角三角形,則有

函數(shù)在區(qū)間內(nèi)單調(diào)遞增的充分必要條件.

其中錯誤的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB1BC2, ABC=60°,PA⊥平面ABCD,AEPCE,

下列四個結(jié)論:①ABAC;②AB⊥平面PAC;③PC⊥平面ABE;④BEPC.正確的個數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極點與坐標原點重合,極軸與軸非負半軸重合,是曲線上任一點滿足,設點的軌跡為.

1)求曲線的平面直角坐標方程;

2)將曲線向右平移個單位后得到曲線,設曲線與直線為參數(shù))相交于、兩點,記點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題:

①關(guān)于的二元一次方程組的系數(shù)行列式是該方程組有解的必要非充分條件;

②已知、、、是空間四點,命題甲:、、四點不共面,命題乙:直線不相交,則甲成立是乙成立的充分非必要條件;

對任意的實數(shù),恒成立的充要條件;

關(guān)于的方程有且僅有一個實根的充要條件;

其中,真命題序號是________

查看答案和解析>>

同步練習冊答案