【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+)=1

1)求直線l的直角坐標方程和曲線C的普通方程;

2)已知點M 20),若直線l與曲線C相交于PQ兩點,求的值.

【答案】1l C方程為 ;(2

【解析】

1)直接利用轉換關系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉換.
2)利用一元二次方程根和系數(shù)關系式的應用求出結果.

(1)曲線C的參數(shù)方程為m為參數(shù)),

兩式相加得到,進一步轉換為

直線l的極坐標方程為ρcosθ+)=1,則

轉換為直角坐標方程為

2)將直線的方程轉換為參數(shù)方程為t為參數(shù)),

代入得到t1t2P、Q對應的參數(shù)),

所以,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內角AB、C的對邊分別為ab、c,且

1)求A;

2)若,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線和曲線,以極點為坐標原點,極軸為軸非負半軸建立平面直角坐標系.

(1)求曲線和曲線的直角坐標方程;

(2)若點是曲線上一動點,過點作線段的垂線交曲線于點,求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱柱的所有棱長都為2,且.

1)證明:平面平面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐SABCD的底面為矩形,SA⊥底面ABCD,點E在線段BC上,以AD為直徑的圓過點 E.若SAAB=3,則△SED面積的最小值為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是圓的直徑,在圓上且分別在的兩側,其中.現(xiàn)將其沿折起使得二面角為直二面角,則下列說法不正確的是(

A.,在同一個球面上

B.時,三棱錐的體積為

C.是異面直線且不垂直

D.存在一個位置,使得平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國一帶一路戰(zhàn)略構思提出后,某科技企業(yè)為抓住一帶一路帶來的機遇,決定開發(fā)生產一款大型電子設備.生產這種設備的年固定成本為500萬元,每生產x臺,需另投入成本萬元,當年產量不足60臺時,萬元;當年產量不小于60臺時,萬元若每臺設備售價為100萬元,通過市場分析,該企業(yè)生產的電子設備能全部售完.

求年利潤萬元關于年產量的函數(shù)關系式;

當年產量為多少臺時,該企業(yè)在這一電子設備的生產中所獲利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,過坐標原點和點分別作曲線的切線,則直線軸所圍成的封閉圖形的面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且

為等邊三角形,平面平面;點分別為的中點.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案