如圖,已知三棱錐OABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,EOC的中點(diǎn).

  (Ⅰ)求異面直線BEAC所成角的余弦值;

  (Ⅱ)求二面角ABEC的余弦值.

同下


解析:

(I)以O為原點(diǎn),OB,OCOA分別為x,yz軸建立空間直角坐標(biāo)系.

則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).

 cos<>

由于異面直線BE與AC所成的角是銳角,故其余弦值是

(II),

設(shè)平面ABE的法向量為,

則由,,得

n=(1,2,2),

平面BEC的一個(gè)法向量為n2=(0,0,1),

由于二面角ABEC的平面角是n1n2的夾角的補(bǔ)角,其余弦值是-

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求O點(diǎn)到面ABC的距離;
(2)求異面直線BE與AC所成的角;
(3)求二面角E-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求直線BE和平面ABC的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=2,OC=4,E是OC的中點(diǎn),求二面角E-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱錐O-ABC中,
OA
=
a
OB
=
b
,
OC
=
c
,G點(diǎn)為△OBC的重心,則
AG
=( 。
A、
1
3
a
-
b
+
1
3
c
B、-
a
+
1
3
b
+
1
3
c
C、
1
3
a
+
1
3
b
-
c
D、-
a
+
2
3
b
+
2
3
c

查看答案和解析>>

同步練習(xí)冊(cè)答案