【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線的準(zhǔn)線與軸交于,拋物線的焦點為,以為焦點,離心率的橢圓與拋物線的一個交點為;自引直線交拋物線于兩個不同的點,設(shè).
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
【答案】(Ⅰ)橢圓的方程為;拋物線的方程是: .(Ⅱ) .
【解析】試題分析:
(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓上的點及離心率可得關(guān)于的方程組,求得可得橢圓的方程;根據(jù)橢圓的焦點坐標(biāo)可得,進而可得拋物線方程.(Ⅱ)設(shè)出直線的方程,與橢圓方程聯(lián)立消元后根據(jù)根與系數(shù)的關(guān)系及弦長公式可得,再根據(jù)的范圍,利用函數(shù)的有關(guān)知識求得的范圍即可.
試題解析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,
由題意得,解得,
∴橢圓的方程為,
∴點的坐標(biāo)為,
∴,
∴拋物線的方程是.
(Ⅱ)由題意得直線的斜率存在,設(shè)其方程為,
由消去x整理得(*)
∵直線與拋物線交于兩點,
∴.
設(shè), ,
則①,②.
∵, ,
∴
∴.③
由①②③消去得: .
∴
,即,
將代入上式得
,
∵單調(diào)遞減,
∴,即,
∴,
∴,
即的求值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直三棱柱中, , , ,點, 分別是的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點和交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,且,.四邊形滿足,,.為側(cè)棱的中點,為側(cè)棱上的任意一點.
(1)若為的中點,求證: 面平面;
(2)是否存在點,使得直線與平面垂直? 若存在,寫出證明過程并求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形,平面交于點,且平面.
(1)求證: ;
(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線與曲線相交于兩點,且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:
(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿作了統(tǒng)計,得到如下數(shù)據(jù)分布:
若分析選擇意愿與年齡這兩個分類變量,計算得到的的觀測值為,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
| ||||
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com