【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:
(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由;
(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿作了統(tǒng)計(jì),得到如下數(shù)據(jù)分布:
若分析選擇意愿與年齡這兩個(gè)分類(lèi)變量,計(jì)算得到的的觀(guān)測(cè)值為,測(cè)得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?
附:
| ||||
【答案】(1)見(jiàn)解析;(2)與年齡相比,選擇意愿與性別關(guān)聯(lián)性更大..
【解析】試題分析:(1)從期望值和方差兩者比較,可得不同職位的月薪差距小一些,故選擇甲公司或我希望不同職位的月薪差距大一些,故選擇乙公司;(2)根據(jù)列聯(lián)表得到,進(jìn)而可下結(jié)論。
解析:(1)設(shè)甲公司與乙公司的月薪分別為隨機(jī)變量,
則,
,
,
則,
我希望不同職位的月薪差距小一些,故選擇甲公司或我希望不同職位的月薪差距大一些,故選擇乙公司;
(2)因?yàn)?/span>,根據(jù)表中對(duì)應(yīng)值,得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)的概率的上限是,
由數(shù)據(jù)分布可得選擇意愿與性別兩個(gè)分類(lèi)變量的列聯(lián)表:
計(jì)算
,差表知得出結(jié)論“選擇意愿與性別有關(guān)”的犯錯(cuò)誤的概率上限為,
由,所以與年齡相比,選擇意愿與性別關(guān)聯(lián)性更大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于,拋物線(xiàn)的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線(xiàn)的一個(gè)交點(diǎn)為;自引直線(xiàn)交拋物線(xiàn)于兩個(gè)不同的點(diǎn),設(shè).
(Ⅰ)求拋物線(xiàn)的方程和橢圓的方程;
(Ⅱ)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為(為參數(shù)),點(diǎn)是曲線(xiàn)上的一動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的方程為 .
(Ⅰ)求線(xiàn)段的中點(diǎn)的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且離心率為.
(I)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn).若直線(xiàn)上存在點(diǎn),使得四邊形是平行四邊形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,其中 . 表示 中所有不同值的個(gè)數(shù).
(Ⅰ)若集合,求;
(Ⅱ)若集合,求證: 的值兩兩不同,并求;
(Ⅲ)求的最小值.(用含的代數(shù)式表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)當(dāng)時(shí), 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在棱錐中, 為矩形, 面, , 與面成角, 與面成角.
(1)在上是否存在一點(diǎn),使面,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;
(2)當(dāng)為中點(diǎn)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線(xiàn)C1:y=cosx,C2:y=sin(2x+),則下面結(jié)論正確的是( 。
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com