【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:

(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由;

(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿作了統(tǒng)計(jì),得到如下數(shù)據(jù)分布:

若分析選擇意愿與年齡這兩個(gè)分類(lèi)變量,計(jì)算得到的的觀(guān)測(cè)值為,測(cè)得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?

附:

【答案】(1)見(jiàn)解析;(2)與年齡相比,選擇意愿與性別關(guān)聯(lián)性更大..

【解析】試題分析:(1)從期望值和方差兩者比較,可得不同職位的月薪差距小一些,故選擇甲公司或我希望不同職位的月薪差距大一些,故選擇乙公司;2)根據(jù)列聯(lián)表得到,進(jìn)而可下結(jié)論。

解析:(1)設(shè)甲公司與乙公司的月薪分別為隨機(jī)變量

,

,

,

,

我希望不同職位的月薪差距小一些,故選擇甲公司或我希望不同職位的月薪差距大一些,故選擇乙公司;

(2)因?yàn)?/span>,根據(jù)表中對(duì)應(yīng)值,得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)的概率的上限是,

由數(shù)據(jù)分布可得選擇意愿與性別兩個(gè)分類(lèi)變量的列聯(lián)表:

計(jì)算

,差表知得出結(jié)論“選擇意愿與性別有關(guān)”的犯錯(cuò)誤的概率上限為,

,所以與年齡相比,選擇意愿與性別關(guān)聯(lián)性更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018貴州遵義市高三上學(xué)期第二次聯(lián)考設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)與軸交于,拋物線(xiàn)的焦點(diǎn)為,以為焦點(diǎn),離心率的橢圓與拋物線(xiàn)的一個(gè)交點(diǎn)為;自引直線(xiàn)交拋物線(xiàn)于兩個(gè)不同的點(diǎn),設(shè)

)求拋物線(xiàn)的方程和橢圓的方程;

)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為為參數(shù)),點(diǎn)是曲線(xiàn)上的一動(dòng)點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的方程為 .

(Ⅰ)求線(xiàn)段的中點(diǎn)的軌跡的極坐標(biāo)方程;

(Ⅱ)求曲線(xiàn)上的點(diǎn)到直線(xiàn)的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

(I)求橢圓的方程;

(Ⅱ)設(shè)直線(xiàn)與橢圓交于兩點(diǎn).若直線(xiàn)上存在點(diǎn),使得四邊形是平行四邊形,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,其中 . 表示 中所有不同值的個(gè)數(shù).

(Ⅰ)若集合,;

(Ⅱ)若集合,求證: 的值兩兩不同,并求;

(Ⅲ)求的最小值.(用含的代數(shù)式表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), .

1)當(dāng)時(shí),討論的單調(diào)性;

(2)當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在棱錐中, 為矩形, , 與面角, 與面角.

1)在上是否存在一點(diǎn),使,若存在確定點(diǎn)位置,若不存在,請(qǐng)說(shuō)明理由;

2)當(dāng)中點(diǎn)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)C1y=cosx,C2y=sin2x+),則下面結(jié)論正確的是( 。

A. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2

B. 把C1上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2

C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向右平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2

D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,縱坐標(biāo)不變,再把得到的曲線(xiàn)向左平移個(gè)單位長(zhǎng)度,得到曲線(xiàn)C2

查看答案和解析>>

同步練習(xí)冊(cè)答案