【題目】黨的十九大報告指出,建設生態(tài)文明是中華民族永續(xù)發(fā)展的千年大計.而清潔能源的廣泛使用將為生態(tài)文明建設提供更有力的支撐.沼氣作為取之不盡、用之不竭的生物清潔能源,在保護綠水青山方面具有獨特功效.通過辦沼氣帶來的農村“廁所革命”,對改善農村人居環(huán)境等方面,起到立竿見影的效果.為了積極響應國家推行的“廁所革命”,某農戶準備建造一個深為2米,容積為32立方米的長方體沼氣池,如果池底每平方米的造價為150元,池壁每平方米的造價為120元,沼氣池蓋子的造價為3000元,問怎樣設計沼氣池能使總造價最低?最低總造價是多少元?

【答案】當沼氣池的底面是邊長為4米的正方形時,沼氣池的總造價最低,最低總造價是9240元.

【解析】

設沼氣池的底面長為米,沼氣池的總造價為元,依題意有,利用基本不等式即可求解.

設沼氣池的底面長為米,沼氣池的總造價為元,

因為沼氣池的深為2米,容積為32立方米,所以底面積為16平方米,

因為底面長為米,所以底面的寬為,

依題意有,

因為,由基本不等式和不等式的性質可得,

,

所以,

當且僅當,即時,等號成立,

所以當沼氣池的底面是邊長為4米的正方形時,沼氣池的總造價最低,最低總造價是9240元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線

1)若直線不經(jīng)過第四象限,求的取值范圍;

2)若直線軸負半軸于點,交軸正半軸于點,為坐標原點,設的面積為,求的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。

I)求應從小學、中學、大學中分別抽取的學校數(shù)目。

II)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,

1)列出所有可能的抽取結果;

2)求抽取的2所學校均為小學的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是正方形, 平面, , .

(1)求證: 平面;

(2)求證: 平面;

(3)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是( )

A. 如果兩條平行直線中的一條與一個平面平行,那么另一條也與這個平面平行

B. 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行

C. 垂直于同一條直線的兩條直線相互垂直

D. 若兩條直線與第三條直線所成的角相等,則這兩條直線互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩直線

1)求直線的交點的坐標;

2)求過交點,且在兩坐標軸截距相等的直線方程;

3)若直線不能構成三角形,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,短軸的兩個端點分別為,點在橢圓上,且滿足,當變化時,給出下列三個命題:

①點的軌跡關于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點僅有兩個,

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)且函數(shù)圖象上點處的切線斜率為.

(1)試用含有的式子表示,并討論的單調性;

(2)對于函數(shù)圖象上的不同兩點如果在函數(shù)圖象上存在點使得點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數(shù)上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名同學參加2018年高考,根據(jù)高三年級一年來的各種大、中、小型數(shù)學模擬考試總結出來的數(shù)據(jù)顯示,甲、乙兩人能考140分以上的概率分別為,甲、乙兩人是否考140分以上相互獨立,則預估這兩個人在2018年高考中恰有一人數(shù)學考140 分以上的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案