【題目】下列各題中,的什么條件?

1為自然數(shù),為整數(shù);

2

3;

4:四邊形的一組對邊相等,:四邊形為平行四邊形;

5:四邊形的對角線互相垂直,:四邊形為菱形.

【答案】1)充分不必要條件;(2)必要不充分條件;(3)充分不必要條件;(4)必要不充分條件;(5)必要不充分條件.

【解析】

由充分與必要條件的概念,結合已有知識,逐個判斷的互相推出性即可.

為自然數(shù),則一定為整數(shù),即可以推出,反過來,為整數(shù),則不一定是自然數(shù),例如,即不能推出,故的充分不必要條件;

不一定成立,例如,即不能推出,反過來,一定成立,即可以推出,故的必要不充分條件;

一定成立,即可以推出,反過來,不一定成立,例如,即不能推出,故的充分不必要條件;

一組對邊相等的四邊形不一定是平行四邊形,例如等腰梯形,反過來,平行四邊形的一組對邊相等成立,即不能推出,可以推出,故的必要不充分條件;

對角線互相垂直的四邊形不一定是菱形,有可能為等腰梯形,反過來,菱形的對角線一定互相垂直,即不能推出,可以推出,故的必要不充分條件;

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓經過拋物線與坐標軸的三個交點.

(1)求圓的方程;

(2)經過點的直線與圓相交于,兩點,若圓,兩點處的切線互相垂直,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合是集合 的一個含有個元素的子集.

(Ⅰ)當時,

(i)寫出方程的解;

(ii)若方程至少有三組不同的解,寫出的所有可能取值.

(Ⅱ)證明:對任意一個,存在正整數(shù)使得方程 至少有三組不同的解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車廠上年度生產汽車的投入成本為10萬元/輛,出廠價為12萬元/輛,年銷售量為10000輛.本年度為適應市場需求,計劃提高產品質量,適度增加投入成本.若每輛車投入成本增加的比例為),則出廠價相應地提高比例為,同時預計年銷售量增加的比例為,已知年利潤=(出廠價-投入成本)×年銷售量.

1)寫出本年度預計的年利潤與投入成本增加的比例的關系式;

2)為使本年度的年利潤比上年度有所增加,則投入成本增加的比應在什么范圍內?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓經過伸縮變換后得到曲線以坐標原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的單位長度,建立極坐標系,直線的極坐標方程為

(1)求曲線的直角坐標方程及直線的直角坐標方程;

(2)設點上一動點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記函數(shù)的定義域為D. 如果存在實數(shù)使得對任意滿

x恒成立,則稱函數(shù).

1)設函數(shù),試判斷是否為函數(shù),并說明理由;

2)設函數(shù),其中常數(shù),證明: 函數(shù);

3)若是定義在上的函數(shù),且函數(shù)的圖象關于直線m為常數(shù))對稱,試判斷是否為周期函數(shù)?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線.

(1)當時,求曲線在處的切線方程;

2)過點作曲線的切線,若所有切線的斜率之和為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橢圓 的離心率為,點在橢圓上.

(1)求橢圓的方程;

(2)已知為平面內的兩個定點,過點的直線與橢圓交于, 兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。

查看答案和解析>>

同步練習冊答案