【題目】已知函數(shù) . (Ⅰ)求該函數(shù)的周期和最大值;
(Ⅱ)該函數(shù)的圖象經(jīng)過怎樣的平移和伸縮變換可以得到y(tǒng)=sinx(x∈R)的圖象.

【答案】解:(Ⅰ) 所以,函數(shù)的周期 ,函數(shù)的最大值為ymax=2..
(Ⅱ)該函數(shù)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再把所得圖象上所有點(diǎn)向右平移 個(gè)單位,可以得到y(tǒng)=sinx(x∈R)的圖象.
或?qū)⒃摵瘮?shù)的圖象上所有的點(diǎn)向右平移 個(gè)單位,再把所得圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),可以得到y(tǒng)=sinx(x∈R)的圖象
【解析】(Ⅰ)利用兩角和的正弦函數(shù)化簡(jiǎn)表達(dá)式,然后求解求該函數(shù)的周期和最大值;(Ⅱ)利用三角函數(shù)的圖形的變換原則,推出結(jié)果即可.
【考點(diǎn)精析】本題主要考查了五點(diǎn)法作函數(shù)y=Asin(ωx+φ)的圖象的相關(guān)知識(shí)點(diǎn),需要掌握描點(diǎn)法及其特例—五點(diǎn)作圖法(正、余弦曲線),三點(diǎn)二線作圖法(正、余切曲線)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點(diǎn)E為棱PC的中點(diǎn).
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求直線BE與平面PBD所成角的正弦值;
(Ⅲ)若F為棱PC上一點(diǎn),滿足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)證明f(x)在(0,+∞)上單調(diào)遞增;
(2)是否存在實(shí)數(shù)a使得f(x)的定義域、值域都是 ,若存在求出a的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個(gè)命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點(diǎn),則平面

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸相切,且切點(diǎn)在軸的正半軸上.

(1)若函數(shù)上的極小值不大于,求的取值范圍;

(2)設(shè),證明: 上的最小值為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 的展開式的系數(shù)和比(3x﹣1)n的展開式的系數(shù)和大992,求(2x﹣ 2n的展開式中:
(1)二項(xiàng)式系數(shù)最大的項(xiàng);
(2)系數(shù)的絕對(duì)值最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個(gè)命題:

:若,則此四棱錐的側(cè)面積為;

:若分別為的中點(diǎn),則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中, ,直線與曲線交于兩點(diǎn).

(1)求的值;

(2)已知點(diǎn),且,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a,b,c,d成等比數(shù)列,且曲線y=3x﹣x3的極大值點(diǎn)坐標(biāo)為(b,c)則ad等于(
A.2
B.1
C.﹣1
D.﹣2

查看答案和解析>>

同步練習(xí)冊(cè)答案